MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 5601. |
\[(\sin \theta ,\cos \theta )\] and \[(3,\,2)\] lies on the same side of the line \[x+y=1\], then \[\theta \] lies between [DCE 2005] |
| A. | \[(0,\,\,\pi /2)\] |
| B. | \[(0,\,\pi )\] |
| C. | \[(\pi /4,\pi /2)\] |
| D. | \[(0,\,\,\pi /4)\] |
| Answer» E. | |
| 5602. |
The equation of the base of an equilateral triangle is \[x+y=2\] and the vertex is (2, -1). The length of the side of the triangle is [IIT 1973, 83, MP PET 1995; RPET 1999, 2000] |
| A. | \[\sqrt{3/2}\] |
| B. | \[\sqrt{2}\] |
| C. | \[\sqrt{2/3}\] |
| D. | None of these |
| Answer» D. None of these | |
| 5603. |
The distance between the lines \[3x+4y=9\]and \[6x+8y=15\]is [MNR 1982; RPET 1995; MP PET 2002] |
| A. | 3/2 |
| B. | 3/10 |
| C. | 6 |
| D. | None of these |
| Answer» C. 6 | |
| 5604. |
The perpendicular distance of the straight line \[12x+5y=7\]from the origin is equal to [Pb. CET 2002] |
| A. | \[\frac{7}{13}\] |
| B. | \[\frac{12}{13}\] |
| C. | \[\frac{5}{13}\] |
| D. | \[\frac{1}{13}\] |
| Answer» B. \[\frac{12}{13}\] | |
| 5605. |
In what ratio the line \[y-x+2=0\]divides the line joining the points (3, -1) and (8, 9) [Karnataka CET 2002] |
| A. | 0.0430555555555556 |
| B. | 0.0840277777777778 |
| C. | 0.0854166666666667 |
| D. | 0.127777777777778 |
| Answer» D. 0.127777777777778 | |
| 5606. |
The distance of point (-2, 3) from the line \[x-y=5\]is [Pb. CET 2001] |
| A. | \[5\sqrt{2}\] |
| B. | \[2\sqrt{5}\] |
| C. | \[3\sqrt{5}\] |
| D. | \[5\sqrt{3}\] |
| Answer» B. \[2\sqrt{5}\] | |
| 5607. |
The length of perpendicular from the point \[(a\cos \alpha ,a\sin \alpha )\] upon the straight line \[y=x\tan \alpha +c,\] \[c>0\] is [MP PET 2004] |
| A. | \[c\cos \alpha \] |
| B. | \[c{{\sin }^{2}}\alpha \] |
| C. | \[c{{\sec }^{2}}\alpha \] |
| D. | \[c{{\cos }^{2}}\alpha \] |
| Answer» B. \[c{{\sin }^{2}}\alpha \] | |
| 5608. |
The position of the point (8,-9) with respect to the lines \[2x+3y-4=0\] and \[6x+9y+8=0\] is |
| A. | Point lies on the same side of the lines |
| B. | Point lies on the different sides of the line |
| C. | Point lies on one of the line |
| D. | None of these |
| Answer» B. Point lies on the different sides of the line | |
| 5609. |
Distance between the parallel lines \[3x+4y+7=0\] and \[3x+4y-5=0\] is [RPET 2003] |
| A. | \[\frac{2}{5}\] |
| B. | \[\frac{12}{5}\] |
| C. | \[\frac{5}{12}\] |
| D. | \[\frac{3}{5}\] |
| Answer» C. \[\frac{5}{12}\] | |
| 5610. |
Distance between the lines \[5x+3y-7=0\] and \[15x+9y+14=0\] is [Kerala (Engg.) 2002] |
| A. | \[\frac{35}{\sqrt{34}}\] |
| B. | \[\frac{1}{3\sqrt{34}}\] |
| C. | \[\frac{35}{3\sqrt{34}}\] |
| D. | \[\frac{35}{2\sqrt{34}}\] |
| Answer» D. \[\frac{35}{2\sqrt{34}}\] | |
| 5611. |
The distance of the lines \[2x-3y=4\]from the point (1, 1) measured parallel to the line \[x+y=1\] is [Orissa JEE 2002] |
| A. | \[\sqrt{2}\] |
| B. | \[\frac{5}{\sqrt{2}}\] |
| C. | \[\frac{1}{\sqrt{2}}\] |
| D. | 6 |
| Answer» B. \[\frac{5}{\sqrt{2}}\] | |
| 5612. |
The distance of the point (-2, 3) from the line \[x-y=5\]is [MP PET 2001] |
| A. | \[5\sqrt{2}\] |
| B. | \[2\sqrt{5}\] |
| C. | \[3\sqrt{5}\] |
| D. | \[5\sqrt{3}\] |
| Answer» B. \[2\sqrt{5}\] | |
| 5613. |
The length of the perpendicular drawn from origin upon the straight line \[\frac{x}{3}-\frac{y}{4}=1\]is [MP PET 1997] |
| A. | \[2\frac{2}{5}\] |
| B. | \[3\frac{1}{5}\] |
| C. | \[4\frac{2}{5}\] |
| D. | \[3\frac{2}{5}\] |
| Answer» B. \[3\frac{1}{5}\] | |
| 5614. |
If \[2p\] is the length of perpendicular from the origin to the lines \[\frac{x}{a}+\frac{y}{b}=1\], then \[{{a}^{2}},8{{p}^{2}},{{b}^{2}}\]are in |
| A. | A. P. |
| B. | G.P. |
| C. | H. P. |
| D. | None of these |
| Answer» D. None of these | |
| 5615. |
The distance between the lines \[3x-2y=1\]and \[6x+9=4y\] is [MP PET 1998] |
| A. | \[\frac{1}{\sqrt{52}}\] |
| B. | \[\frac{11}{\sqrt{52}}\] |
| C. | \[\frac{4}{\sqrt{13}}\] |
| D. | \[\frac{6}{\sqrt{13}}\] |
| Answer» C. \[\frac{4}{\sqrt{13}}\] | |
| 5616. |
The ratio in which the line \[3x+4y+2=0\] divides the distance between \[3x+4y+5=0\] and \[3x+4y-5=0\], is |
| A. | \[7:3\] |
| B. | 3 : 7 |
| C. | \[2:3\] |
| D. | None of these |
| Answer» C. \[2:3\] | |
| 5617. |
The vertex of an equilateral triangle is (2,-1) and the equation of its base in\[x+2y=1\]. The length of its sides is [UPSEAT 2003] |
| A. | \[4/\sqrt{15}\] |
| B. | \[2/\sqrt{15}\] |
| C. | \[4/3\sqrt{3}\] |
| D. | \[1/\sqrt{5}\] |
| Answer» C. \[4/3\sqrt{3}\] | |
| 5618. |
The distance between \[4x+3y=11\] and \[8x+6y=15\], is [AMU 1979; MNR 1987; UPSEAT 2000] |
| A. | \[\frac{7}{2}\] |
| B. | 4 |
| C. | \[\frac{7}{10}\] |
| D. | None of these |
| Answer» D. None of these | |
| 5619. |
The distance between two parallel lines \[3x+4y-8=0\]and \[3x+4y-3=0\], is given by [MP PET 1984] |
| A. | 4 |
| B. | 5 |
| C. | 3 |
| D. | 1 |
| Answer» E. | |
| 5620. |
The length of perpendicular from (3, 1) on line \[4x+3y+20=0\], is [RPET 1989; MP PET 1984] |
| A. | 6 |
| B. | 7 |
| C. | 5 |
| D. | 8 |
| Answer» C. 5 | |
| 5621. |
The points on the x-axis whose perpendicular distance from the line \[\frac{x}{a}+\frac{y}{b}=1\] is a, are [RPET 2001; MP PET 2003] |
| A. | \[\left[ \frac{a}{b}(b\pm \sqrt{{{a}^{2}}+{{b}^{2}}}),\,0 \right]\] |
| B. | \[\left[ \frac{b}{a}(b\pm \sqrt{{{a}^{2}}+{{b}^{2}}}),\,0 \right]\] |
| C. | \[\left[ \frac{a}{b}(a\pm \sqrt{{{a}^{2}}+{{b}^{2}}}),\,0 \right]\] |
| D. | None of these |
| Answer» B. \[\left[ \frac{b}{a}(b\pm \sqrt{{{a}^{2}}+{{b}^{2}}}),\,0 \right]\] | |
| 5622. |
\[x\sqrt{1+y}+y\sqrt{1+x}=0\], then \[\frac{dy}{dx}=\] [RPET 1989, 96] |
| A. | \[1+x\] |
| B. | \[{{(1+x)}^{-2}}\] |
| C. | \[-{{(1+x)}^{-1}}\] |
| D. | \[-{{(1+x)}^{-2}}\] |
| Answer» E. | |
| 5623. |
If \[x={{e}^{y+{{e}^{y+....t\text{o}\,\,\infty }}}}\], \[x>0,\] then \[\frac{dy}{dx}\] is [AIEEE 2004] |
| A. | \[\frac{1+x}{x}\] |
| B. | \[\frac{1}{x}\] |
| C. | \[\frac{1-x}{x}\] |
| D. | \[\frac{x}{1+x}\] |
| Answer» D. \[\frac{x}{1+x}\] | |
| 5624. |
If \[{{x}^{m}}{{y}^{n}}=2{{(x+y)}^{m+n}},\] the value of \[\frac{dy}{dx}\] is [MP PET 2003] |
| A. | \[x+y\] |
| B. | \[x/y\] |
| C. | \[y/x\] |
| D. | \[x-y\] |
| Answer» D. \[x-y\] | |
| 5625. |
The derivative of \[y={{x}^{\ln x}}\] is [AMU 2000] |
| A. | \[{{x}^{\ln x}}\ln x\] |
| B. | \[{{x}^{\text{ln}\,x-1}}\text{ln}\,x\] |
| C. | \[2{{x}^{\ln x-1}}\ln \,x\] |
| D. | \[{{x}^{\ln x-2}}\] |
| Answer» D. \[{{x}^{\ln x-2}}\] | |
| 5626. |
If \[{{2}^{x}}+{{2}^{y}}={{2}^{x+y}},\]then the value of \[\frac{dy}{dx}\] at \[x=y=1\]is [Karnataka CET 2000] |
| A. | 0 |
| B. | ? 1 |
| C. | 1 |
| D. | 2 |
| Answer» C. 1 | |
| 5627. |
If \[y={{2}^{1/{{\log }_{x}}4}}\], then x is equal to [Roorkee 1998] |
| A. | \[\sqrt{y}\] |
| B. | \[y\] |
| C. | \[{{y}^{2}}\] |
| D. | \[{{y}^{4}}\] |
| Answer» D. \[{{y}^{4}}\] | |
| 5628. |
If \[y=\frac{1}{4}{{u}^{4}},u=\frac{2}{3}{{x}^{3}}+5\], then \[\frac{dy}{dx}=\] [DSSE 1979] |
| A. | \[\frac{1}{27}{{x}^{2}}{{(2{{x}^{3}}+15)}^{3}}\] |
| B. | \[\frac{2}{27}x{{(2{{x}^{3}}+5)}^{3}}\] |
| C. | \[\frac{2}{27}{{x}^{2}}{{(2{{x}^{3}}+15)}^{3}}\] |
| D. | None of these |
| Answer» D. None of these | |
| 5629. |
\[y={{(\tan x)}^{{{(\tan x)}^{\tan x}}}},\] then at\[x=\frac{\pi }{4}\], the value of \[\frac{dy}{dx}=\] [WB JEE 1990] |
| A. | 0 |
| B. | 1 |
| C. | 2 |
| D. | None of these |
| Answer» D. None of these | |
| 5630. |
If \[{{x}^{y}}.{{y}^{x}}=1\], then \[\frac{dy}{dx}\]= |
| A. | \[\frac{y\,(y+x\log y)}{x(y\log x+x)}\] |
| B. | \[\frac{y\,(x+y\log x)}{x(y+x\log y)}\] |
| C. | \[-\frac{y(y+x\log y)}{x(x+y\log x)}\] |
| D. | None of these |
| Answer» D. None of these | |
| 5631. |
If \[y={{\sqrt{x}}^{{{\sqrt{x}}^{\sqrt{x}....\infty }}}}\], then \[\frac{dy}{dx}=\] |
| A. | \[\frac{{{y}^{2}}}{2x-2y\log x}\] |
| B. | \[\frac{{{y}^{2}}}{2x+\log x}\] |
| C. | \[\frac{{{y}^{2}}}{2x+2y\log x}\] |
| D. | None of these |
| Answer» E. | |
| 5632. |
If \[y={{(\tan x)}^{\cot x}}\], then \[\frac{dy}{dx}\backslash \]= [AISSE 1985] |
| A. | \[y\cos \text{e}{{\text{c}}^{2}}x(1-\log \tan x)\] |
| B. | \[y\,\text{cos}\text{e}{{\text{c}}^{2}}x(1+\log \tan x)\] |
| C. | \[y\cos \text{e}{{\text{c}}^{2}}x(\log \tan x)\] |
| D. | None of these |
| Answer» B. \[y\,\text{cos}\text{e}{{\text{c}}^{2}}x(1+\log \tan x)\] | |
| 5633. |
\[\frac{d}{dx}\{{{(\sin x)}^{\log x}}\}=\] [DSSE 1984] |
| A. | \[{{(\sin x)}^{\log x}}\left[ \frac{1}{x}\log \sin x+\cot x \right]\] |
| B. | \[{{(\sin x)}^{\log x}}\left[ \frac{1}{x}\log \sin x+\cot x\log x \right]\] |
| C. | \[{{(\sin x)}^{\log x}}\left[ \frac{1}{x}\log \sin x+\log x \right]\] |
| D. | None of these |
| Answer» C. \[{{(\sin x)}^{\log x}}\left[ \frac{1}{x}\log \sin x+\log x \right]\] | |
| 5634. |
If \[y=\frac{\sqrt{x}{{(2x+3)}^{2}}}{\sqrt{x+1}},\]then \[\frac{dy}{dx}=\] [AISSE 1986] |
| A. | \[y\text{ }\left[ \frac{1}{2x}+\frac{4}{2x+3}-\frac{1}{2(x+1)} \right]\] |
| B. | \[y\text{ }\left[ \frac{1}{3x}+\frac{4}{2x+3}+\frac{1}{2(x+1)} \right]\] |
| C. | \[y\text{ }\left[ \frac{1}{3x}+\frac{4}{2x+3}+\frac{1}{x+1} \right]\] |
| D. | None of these |
| Answer» B. \[y\text{ }\left[ \frac{1}{3x}+\frac{4}{2x+3}+\frac{1}{2(x+1)} \right]\] | |
| 5635. |
\[\frac{d}{dx}\{{{(\sin x)}^{x}}\}\]= [DSSE 1985, 87; AISSE 1983] |
| A. | \[\left[ \frac{x\cos x+\sin x\log \sin x}{\sin x} \right]\] |
| B. | \[{{(\sin x)}^{x}}\left[ \frac{x\cos x+\sin x\log \sin x}{\sin x} \right]\] |
| C. | \[{{(\sin x)}^{x}}\left[ \frac{x\sin x+\sin x\log \sin x}{\sin x} \right]\] |
| D. | None of these |
| Answer» C. \[{{(\sin x)}^{x}}\left[ \frac{x\sin x+\sin x\log \sin x}{\sin x} \right]\] | |
| 5636. |
If \[\cos (x+y)=y\sin x,\]then \[\frac{dy}{dx}=\] [AI CBSE 1979] |
| A. | \[-\frac{\sin (x+y)+y\cos x}{\sin x+\sin x+y)}\] |
| B. | \[\frac{\sin (x+y)+y\cos x}{\sin x+\sin (x+y)}\] |
| C. | \[-\frac{\sin (x+y)+y\cos x}{\sin x+\sin x+y)}\] |
| D. | None of these |
| Answer» B. \[\frac{\sin (x+y)+y\cos x}{\sin x+\sin (x+y)}\] | |
| 5637. |
If \[y={{x}^{\sin x}},\]then \[\frac{dy}{dx}=\] [DSSE 1983, 84] |
| A. | \[\frac{x\cos x.\log x+\sin x}{x}.{{x}^{\sin x}}\] |
| B. | \[\frac{y[x\cos x.\log x+\cos x]}{x}\] |
| C. | \[y[x\sin x.\log x+\cos x]\] |
| D. | None of these |
| Answer» B. \[\frac{y[x\cos x.\log x+\cos x]}{x}\] | |
| 5638. |
If \[y={{x}^{({{x}^{x}})}}\], then \[\frac{dy}{dx}=\] [AISSE 1989] |
| A. | \[y[{{x}^{x}}(\log ex).\log x+{{x}^{x}}]\] |
| B. | \[y[{{x}^{x}}(\log ex).\log x+x]\] |
| C. | \[y[{{x}^{x}}(\log ex).\log x+{{x}^{x-1}}]\] |
| D. | \[y[{{x}^{x}}({{\log }_{e}}x).\log x+{{x}^{x-1}}]\] |
| Answer» D. \[y[{{x}^{x}}({{\log }_{e}}x).\log x+{{x}^{x-1}}]\] | |
| 5639. |
If \[{{x}^{y}}={{y}^{x}},\]then \[\frac{dy}{dx}=\] [DSSE 1996; MP PET 1997] |
| A. | \[\frac{y(x{{\log }_{e}}y+y)}{x(y{{\log }_{e}}x+x)}\] |
| B. | \[\frac{y(x{{\log }_{e}}y-y)}{x(y{{\log }_{e}}x-x)}\] |
| C. | \[\frac{x(x{{\log }_{e}}y-y)}{y(y{{\log }_{e}}x-x)}\] |
| D. | \[\frac{x(x{{\log }_{e}}y+y)}{y(y{{\log }_{e}}x+x)}\] |
| Answer» C. \[\frac{x(x{{\log }_{e}}y-y)}{y(y{{\log }_{e}}x-x)}\] | |
| 5640. |
If \[y={{\left( 1+\frac{1}{x} \right)}^{x}}\], then \[\frac{dy}{dx}=\] [BIT Ranchi 1992] |
| A. | \[{{\left( 1+\frac{1}{x} \right)}^{x}}\left[ \log \left( 1+\frac{1}{x} \right)-\frac{1}{1+x} \right]\] |
| B. | \[{{\left( 1+\frac{1}{x} \right)}^{x}}\left[ \log \left( 1+\frac{1}{x} \right) \right]\] |
| C. | \[{{\left( x+\frac{1}{x} \right)}^{x}}\left[ \log (x-1)-\frac{x}{x+1} \right]\] |
| D. | \[{{\left( 1+\frac{1}{x} \right)}^{x}}\left[ \log \left( 1+\frac{1}{x} \right)+\frac{1}{1+x} \right]\] |
| Answer» B. \[{{\left( 1+\frac{1}{x} \right)}^{x}}\left[ \log \left( 1+\frac{1}{x} \right) \right]\] | |
| 5641. |
The differential equation satisfied by the function \[y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+.....\infty }}}\], is [MP PET 1998; Pb. CET 2001] |
| A. | \[(2y-1)\frac{dy}{dx}-\sin x=0\] |
| B. | \[(2y-1)\cos x+\frac{dy}{dx}=0\] |
| C. | \[(2y-1)\cos x-\frac{dy}{dx}=0\] |
| D. | \[(2y-1)\cos x+\frac{dy}{dx}=0\] |
| Answer» E. | |
| 5642. |
If \[y={{({{x}^{x}})}^{x}}\], then \[\frac{dy}{dx}\]= |
| A. | \[{{({{x}^{x}})}^{x}}(1+2\log x)\] |
| B. | \[{{({{x}^{x}})}^{x}}(1+\log x)\] |
| C. | \[x{{({{x}^{x}})}^{x}}(1+2\log x)\] |
| D. | \[x\,{{({{x}^{x}})}^{x}}(1+\log x)\] |
| Answer» D. \[x\,{{({{x}^{x}})}^{x}}(1+\log x)\] | |
| 5643. |
If \[y={{x}^{\sqrt{x}}},\]then \[\frac{dy}{dx}\]= |
| A. | \[{{x}^{\sqrt{x}}}\frac{2+\log x}{2\sqrt{x}}\] |
| B. | \[{{x}^{\sqrt{x}}}\frac{2+\log x}{\sqrt{x}}\] |
| C. | \[\frac{2+\log x}{2\sqrt{x}}\] |
| D. | None of these |
| Answer» B. \[{{x}^{\sqrt{x}}}\frac{2+\log x}{\sqrt{x}}\] | |
| 5644. |
If \[x=a{{t}^{2}},y=2at\], then \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=\] [Karnataka CET 1993] |
| A. | \[-\frac{1}{{{t}^{2}}}\] |
| B. | \[\frac{1}{2a{{t}^{3}}}\] |
| C. | \[-\frac{1}{{{t}^{3}}}\] |
| D. | \[-\frac{1}{2a{{t}^{3}}}\] |
| Answer» E. | |
| 5645. |
If \[y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+.....\infty }}}\], then \[\frac{dy}{dx}=\] |
| A. | \[\frac{x}{2y-1}\] |
| B. | \[\frac{x}{2y+1}\] |
| C. | \[\frac{1}{x(2y-1)}\] |
| D. | \[\frac{1}{x(1-2y)}\] |
| Answer» D. \[\frac{1}{x(1-2y)}\] | |
| 5646. |
If \[{{y}^{x}}+{{x}^{y}}={{a}^{b}}\],then \[\frac{dy}{dx}=\] |
| A. | \[-\frac{y{{x}^{y-1}}+{{y}^{x}}\log y}{x{{y}^{x-1}}+{{x}^{y}}\log x}\] |
| B. | \[\frac{y{{x}^{y-1}}+{{y}^{x}}\log y}{x{{y}^{x-1}}+{{x}^{y}}\log x}\] |
| C. | \[-\frac{y{{x}^{y-1}}+{{y}^{x}}}{x{{y}^{x-1}}+{{x}^{y}}l}\] |
| D. | \[\frac{y{{x}^{y-1}}+{{y}^{x}}}{x{{y}^{x-1}}+{{x}^{y}}}\] |
| Answer» B. \[\frac{y{{x}^{y-1}}+{{y}^{x}}\log y}{x{{y}^{x-1}}+{{x}^{y}}\log x}\] | |
| 5647. |
If \[y=\sqrt{\frac{(x-a)(x-b)}{(x-c)(x-d)}}\], then \[\frac{dy}{dx}=\] |
| A. | \[\frac{y}{2}\left[ \frac{1}{x-a}+\frac{1}{x-b}-\frac{1}{x-c}-\frac{1}{x-d} \right]\] |
| B. | \[y\,\left[ \frac{1}{x-a}+\frac{1}{x-b}-\frac{1}{x-c}-\frac{1}{x-d} \right]\] |
| C. | \[\frac{1}{2}\left[ \frac{1}{x-a}+\frac{1}{x-b}-\frac{1}{x-c}-\frac{1}{x-d} \right]\] |
| D. | None of these |
| Answer» B. \[y\,\left[ \frac{1}{x-a}+\frac{1}{x-b}-\frac{1}{x-c}-\frac{1}{x-d} \right]\] | |
| 5648. |
If \[y=\log {{x}^{x}},\]then \[\frac{dy}{dx}=\] [MNR 1978] |
| A. | \[{{x}^{x}}(1+\log x)\] |
| B. | \[\log (ex)\] |
| C. | \[\log \left( \frac{e}{x} \right)\] |
| D. | None of these |
| Answer» C. \[\log \left( \frac{e}{x} \right)\] | |
| 5649. |
If \[{{2}^{x}}+{{2}^{y}}={{2}^{x+y}}\], then \[\frac{dy}{dx}=\] [MP PET 1995; AMU 2000] |
| A. | \[{{2}^{x-y}}\frac{{{2}^{y}}-1}{{{2}^{x}}-1}\] |
| B. | \[{{2}^{x-y}}\frac{{{2}^{y}}-1}{1-{{2}^{x}}}\] |
| C. | \[\frac{{{2}^{x}}+{{2}^{y}}}{{{2}^{x}}-{{2}^{y}}}\] |
| D. | None of these |
| Answer» C. \[\frac{{{2}^{x}}+{{2}^{y}}}{{{2}^{x}}-{{2}^{y}}}\] | |
| 5650. |
If \[{{x}^{y}}={{e}^{x-y}}\], then \[\frac{dy}{dx}=\] [MP PET 1987, 2004; MNR 1984; Roorkee 1954; BIT Ranchi 1991; RPET 2000] |
| A. | \[\log x.{{[\log (ex)]}^{-2}}\] |
| B. | \[\log x.{{[\log (ex)]}^{2}}\] |
| C. | \[\log x.{{(\log x)}^{2}}\] |
| D. | None of these |
| Answer» B. \[\log x.{{[\log (ex)]}^{2}}\] | |