Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

4001.

To find the value of \[\int_{{}}^{{}}{\frac{dx}{x\sqrt{2ax-{{x}^{2}}}}}\], the suitable substitution is

A.            \[x=a\cos t\]
B.            \[x=2a\cos t\]
C.            \[x=2at\]
D.            \[x=2a{{\sin }^{2}}t\]
Answer» E.
4002.

\[\int_{{}}^{{}}{\frac{{{e}^{x}}\ dx}{\sqrt{1-{{e}^{2x}}}}=}\]

A.            \[{{\cos }^{-1}}({{e}^{x}})+c\]
B.            \[-{{\cos }^{-1}}({{e}^{x}})+c\]
C.            \[{{\cos }^{-1}}({{e}^{2x}})+c\]
D.            \[\sqrt{1-{{e}^{2x}}}+c\]
Answer» C.            \[{{\cos }^{-1}}({{e}^{2x}})+c\]
4003.

\[\int_{{}}^{{}}{\tan x}{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}\ dx=\]

A.            \[-\frac{1}{3}{{(1-{{\tan }^{2}}x)}^{3/2}}+c\]
B.            \[\frac{1}{3}{{(1-{{\tan }^{2}}x)}^{3/2}}+c\]
C.            \[-\frac{2}{3}{{(1-{{\tan }^{2}}x)}^{2/3}}+c\]
D.            None of these
Answer» B.            \[\frac{1}{3}{{(1-{{\tan }^{2}}x)}^{3/2}}+c\]
4004.

For which of the following functions, the substitution \[{{x}^{2}}=t\]is applicable   

A.            \[\int_{{}}^{{}}{{{x}^{6}}{{\tan }^{-1}}{{x}^{3}}}\ dx\]
B.            \[\int_{{}}^{{}}{{{\tan }^{-1}}\left( \frac{2x}{1-{{x}^{2}}} \right)\ dx}\]
C.            \[\int_{{}}^{{}}{{{x}^{3}}\cos {{x}^{2}}\ dx}\]
D.            None of these
Answer» D.            None of these
4005.

\[\int_{{}}^{{}}{\frac{f'(x)}{{{[f(x)]}^{2}}}}\ dx=\]

A.            \[-{{[f(x)]}^{-1}}+c\]
B.            \[\log [f(x)]+c\]
C.            \[{{e}^{f(x)}}+c\]
D.            None of these
Answer» B.            \[\log [f(x)]+c\]
4006.

\[\int_{{}}^{{}}{\frac{dx}{x\sqrt{1-{{(\log x)}^{2}}}}=}\]

A.            \[{{\cos }^{-1}}(\log x)+c\]
B.            \[x\log (1-{{x}^{2}})+c\]
C.            \[{{\sin }^{-1}}(\log x)+c\]
D.            \[\frac{1}{2}{{\cos }^{-1}}(\log x)+c\]
Answer» D.            \[\frac{1}{2}{{\cos }^{-1}}(\log x)+c\]
4007.

\[\int_{{}}^{{}}{\frac{dx}{{{e}^{-2x}}{{({{e}^{2x}}+1)}^{2}}}=}\]

A.            \[\frac{-1}{2({{e}^{2x}}+1)}+c\]
B.            \[\frac{1}{2({{e}^{2x}}+1)}+c\]
C.            \[\frac{1}{{{e}^{2x}}+1}+c\]
D.            \[\frac{-1}{{{e}^{2x}}+1}+c\]
Answer» B.            \[\frac{1}{2({{e}^{2x}}+1)}+c\]
4008.

\[\int_{{}}^{{}}{{{e}^{x}}{{\tan }^{2}}({{e}^{x}})dx=}\]

A.            \[\tan ({{e}^{x}})-x+c\]
B.            \[{{e}^{x}}(\tan {{e}^{x}}-1)+c\]
C.            \[\sec ({{e}^{x}})+c\]
D.            \[\tan ({{e}^{x}})-{{e}^{x}}+c\]
Answer» E.
4009.

\[\int_{{}}^{{}}{\frac{\sec x\ dx}{\sqrt{\cos 2x}}}=\]

A.            \[{{\sin }^{-1}}(\tan x)\]
B.            \[\tan x\]
C.            \[{{\cos }^{-1}}(\tan x)\]
D.            \[\frac{\sin x}{\sqrt{\cos x}}\]
Answer» B.            \[\tan x\]
4010.

\[\int_{{}}^{{}}{\frac{1}{\sqrt{x}}}\sin \sqrt{x}\ dx=\]       [MP PET 1989]

A.            \[-\frac{1}{2}\cos \sqrt{x}+c\]
B.            \[-2\cos \sqrt{x}+c\]
C.            \[\frac{1}{2}\cos \sqrt{x}+c\]
D.            \[2\cos \sqrt{x}+c\]
Answer» C.            \[\frac{1}{2}\cos \sqrt{x}+c\]
4011.

\[\int_{{}}^{{}}{\frac{\text{cose}{{\text{c}}^{2}}x}{1+\cot x}dx=}\] [MNR 1973]

A.            \[\log (1+\cot x)+c\]
B.            \[-\log (1+\cot x)+c\]
C.            \[\frac{1}{2{{(1+\cot x)}^{2}}}+c\]
D.            None of these
Answer» C.            \[\frac{1}{2{{(1+\cot x)}^{2}}}+c\]
4012.

To evaluate \[\int_{{}}^{{}}{\frac{{{\sec }^{2}}x}{(1+\tan x)(2+\tan x)}\ dx}\], the most suitable substitution is  

A.            \[1+\tan x=t\]
B.            \[2+\tan x=t\]
C.            \[\tan x=t\]
D.            None of these
Answer» D.            None of these
4013.

\[\int_{{}}^{{}}{\frac{1}{{{\cos }^{-1}}x.\sqrt{1-{{x}^{2}}}}dx=}\]

A.            \[\log ({{\cos }^{-1}}x)+c\]
B.            \[-\log ({{\cos }^{-1}}x)+c\]
C.            \[-\frac{1}{2{{({{\cos }^{-1}}x)}^{2}}}+c\]
D.            None of these
Answer» C.            \[-\frac{1}{2{{({{\cos }^{-1}}x)}^{2}}}+c\]
4014.

To evaluate \[\int_{{}}^{{}}{{{x}^{3}}{{e}^{3{{x}^{2}}+5}}}dx\], the simplest way is to  

A.            Substitute \[{{x}^{2}}=t\]
B.            Substitute \[(3{{x}^{2}}+5)=t\]
C.            Integrate by parts
D.            None of these
Answer» C.            Integrate by parts
4015.

\[\int_{{}}^{{}}{\sec x{{\tan }^{3}}x\ dx=}\]

A.            \[\frac{1}{3}{{\sec }^{3}}x-\sec x+c\]
B.            \[{{\sec }^{3}}x-\sec x+c\]
C.            \[\frac{1}{3}{{\sec }^{3}}x+\sec x+c\]
D.            None of these
Answer» B.            \[{{\sec }^{3}}x-\sec x+c\]
4016.

\[\int_{{}}^{{}}{{{\cos }^{5}}x\ dx=}\]

A.            \[\sin x-\frac{2}{3}{{\sin }^{3}}x+\frac{1}{5}{{\sin }^{5}}x+c\]
B.            \[\sin x+\frac{2}{3}{{\sin }^{3}}x+\frac{1}{5}{{\sin }^{5}}x+c\]
C.            \[\sin x-\frac{2}{3}{{\sin }^{3}}x-\frac{1}{5}{{\sin }^{5}}x+c\]
D.            None of these
Answer» B.            \[\sin x+\frac{2}{3}{{\sin }^{3}}x+\frac{1}{5}{{\sin }^{5}}x+c\]
4017.

\[\int_{{}}^{{}}{{{\sec }^{2/3}}x\,\text{cose}{{\text{c}}^{4/3}}x\ dx=}\]

A.            \[-3{{(\tan x)}^{1/3}}+c\]
B.            \[-3{{(\tan x)}^{-1/3}}+c\]
C.            \[3{{(\tan x)}^{-1/3}}+c\]
D.            \[{{(\tan x)}^{-1/3}}+c\]
Answer» C.            \[3{{(\tan x)}^{-1/3}}+c\]
4018.

\[\int_{{}}^{{}}{\cos x\sqrt{4-{{\sin }^{2}}x}}\ dx=\]

A.            \[\frac{1}{2}\sin x\sqrt{4-{{\sin }^{2}}x}-2{{\sin }^{-1}}\left( \frac{1}{2}\sin x \right)+c\]
B.            \[\frac{1}{2}\sin x\sqrt{4-{{\sin }^{2}}x}+2{{\sin }^{-1}}\left( \frac{1}{2}\sin x \right)+c\]
C.            \[\frac{1}{2}\sin x\sqrt{4-{{\sin }^{2}}x}+{{\sin }^{-1}}\left( \frac{1}{2}\sin x \right)+c\]
D.            None of these
Answer» C.            \[\frac{1}{2}\sin x\sqrt{4-{{\sin }^{2}}x}+{{\sin }^{-1}}\left( \frac{1}{2}\sin x \right)+c\]
4019.

\[\int_{{}}^{{}}{{{x}^{2}}{{(3)}^{{{x}^{3}}+1}}dx=}\]

A.            \[{{(3)}^{{{x}^{3}}}}+c\]
B.            \[\frac{{{(3)}^{{{x}^{3}}}}}{\log 3}+c\]
C.            \[\log 3{{(3)}^{{{x}^{3}}}}+c\]
D.            None of these
Answer» C.            \[\log 3{{(3)}^{{{x}^{3}}}}+c\]
4020.

\[\int_{{}}^{{}}{\frac{3{{x}^{2}}}{\sqrt{9-16{{x}^{6}}}}}\ dx=\]

A.            \[\frac{1}{4}{{\sin }^{-1}}\left( \frac{4{{x}^{3}}}{3} \right)+c\]
B.            \[\frac{1}{3}{{\sin }^{-1}}\left( \frac{4{{x}^{3}}}{3} \right)+c\]
C.            \[\frac{1}{4}{{\sin }^{-1}}{{x}^{3}}+c\]
D.            \[\frac{1}{3}{{\sin }^{-1}}{{x}^{3}}+c\]
Answer» B.            \[\frac{1}{3}{{\sin }^{-1}}\left( \frac{4{{x}^{3}}}{3} \right)+c\]
4021.

To find the value of \[\int_{{}}^{{}}{\frac{1+\log x}{x}\text{ }}dx\], the proper substitution is           [MP PET 1988]

A.            \[\log x=t\]
B.            \[1+\log x=t\]
C.            \[\frac{1}{x}=t\]
D.            None of these
Answer» C.            \[\frac{1}{x}=t\]
4022.

\[\int_{{}}^{{}}{\frac{1}{\sqrt{1-{{e}^{2x}}}}\ dx=}\] [MP PET 1993, 2002; RPET 1999]

A.            \[x-\log [1+\sqrt{1-{{e}^{2x}}}]+c\]
B.            \[x+\log [1+\sqrt{1-{{e}^{2x}}}]+c\]
C.            \[\log [1+\sqrt{1-{{e}^{2x}}}]-x+c\]
D.            None of these
Answer» B.            \[x+\log [1+\sqrt{1-{{e}^{2x}}}]+c\]
4023.

\[\int_{{}}^{{}}{\frac{{{e}^{-x}}}{1+{{e}^{x}}}\ dx=}\]

A.            \[\log (1+{{e}^{x}})-x-{{e}^{-x}}+c\]
B.            \[\log (1+{{e}^{x}})+x-{{e}^{-x}}+c\]
C.            \[\log (1+{{e}^{x}})-x+{{e}^{-x}}+c\]
D.            \[\log (1+{{e}^{x}})+x+{{e}^{-x}}+c\]
Answer» B.            \[\log (1+{{e}^{x}})+x-{{e}^{-x}}+c\]
4024.

\[\int_{{}}^{{}}{\frac{x}{1+{{x}^{4}}}\ dx=}\]      [IIT 1978; UPSEAT 2002]

A.            \[\frac{1}{2}{{\cot }^{-1}}{{x}^{2}}+c\]
B.            \[\frac{1}{2}{{\tan }^{-1}}{{x}^{2}}+c\]
C.            \[{{\cot }^{-1}}{{x}^{2}}+c\]
D.            \[{{\tan }^{-1}}{{x}^{2}}+c\]
Answer» C.            \[{{\cot }^{-1}}{{x}^{2}}+c\]
4025.

\[\int_{{}}^{{}}{\tan (3x-5)\sec (3x-5)\ dx=}\]                    [MP PET 1988]

A.            \[\sec (3x-5)+c\]
B.            \[\frac{1}{3}\sec (3x-5)+c\]
C.            \[\tan (3x-5)+c\]
D.            None of these
Answer» C.            \[\tan (3x-5)+c\]
4026.

\[\int_{{}}^{{}}{{{\cos }^{3}}x\ {{e}^{\log (\sin x)}}}\ dx\] is equal to

A.            \[-\frac{{{\sin }^{4}}x}{4}+c\]
B.            \[-\frac{{{\cos }^{4}}x}{4}+c\]
C.            \[\frac{{{e}^{\sin x}}}{4}+c\]
D.            None of these
Answer» C.            \[\frac{{{e}^{\sin x}}}{4}+c\]
4027.

\[\int_{{}}^{{}}{\frac{\tan (\log x)}{x}\ dx=}\]

A.            \[\log \cos (\log x)+c\]
B.            \[\log \sin (\log x)+c\]
C.            \[\log \sec (\log x)+c\]
D.            \[\log \text{cosec}(\log x)+c\]
Answer» D.            \[\log \text{cosec}(\log x)+c\]
4028.

\[\int_{{}}^{{}}{\frac{1}{{{({{e}^{x}}+{{e}^{-x}})}^{2}}}\ dx=}\]

A.            \[-\frac{1}{2({{e}^{2x}}+1)}+c\]
B.            \[\frac{1}{2({{e}^{2x}}+1)}+c\]
C.            \[-\frac{1}{{{e}^{2x}}+1}\]
D.            None of these
Answer» B.            \[\frac{1}{2({{e}^{2x}}+1)}+c\]
4029.

\[\int_{{}}^{{}}{\frac{dx}{x+x\log x}=}\]    [MP PET 1993; Roorkee 1977]

A.            \[\log (1+\log x)\]
B.            \[\log \log (1+\log x)\]
C.            \[\log x+\log (\log x)\]
D.            None of these
Answer» B.            \[\log \log (1+\log x)\]
4030.

\[\int_{{}}^{{}}{\frac{10{{x}^{9}}+{{10}^{x}}{{\log }_{e}}10}{{{10}^{x}}+{{x}^{10}}}}\ dx=\] [MNR 1979]

A.            \[-\frac{1}{2}\frac{1}{{{({{10}^{x}}+{{x}^{10}})}^{2}}}+c\]
B.            \[\log ({{10}^{x}}+{{x}^{10}})+c\]
C.            \[\frac{1}{2}\frac{1}{{{({{10}^{x}}+{{x}^{10}})}^{2}}}+c\]
D.            None of these
Answer» C.            \[\frac{1}{2}\frac{1}{{{({{10}^{x}}+{{x}^{10}})}^{2}}}+c\]
4031.

\[\int_{{}}^{{}}{\frac{\cos \text{ec}x}{\log \tan \frac{x}{2}}\ dx=}\]

A.            \[\log \left( \log \tan \frac{x}{2} \right)+c\]
B.            \[2\log \left( \log \tan \frac{x}{2} \right)+c\]
C.            \[\frac{1}{2}\log \left( \log \tan \frac{x}{2} \right)+c\]
D.            None of these
Answer» B.            \[2\log \left( \log \tan \frac{x}{2} \right)+c\]
4032.

\[\int_{{}}^{{}}{\frac{{{e}^{2x}}-1}{{{e}^{2x}}+1}}\ dx=\] [MP PET 1987]

A.            \[\frac{{{e}^{2x}}-1}{{{e}^{2x}}+1}+c\]
B.            \[\log ({{e}^{2x}}+1)-x+c\]
C.            \[\log ({{e}^{2x}}+1)+c\]
D.            None of these
Answer» C.            \[\log ({{e}^{2x}}+1)+c\]
4033.

\[\int_{{}}^{{}}{\frac{1}{x\sqrt{1+\log x}}\ dx=}\]           [Roorkee 1977]

A.            \[\frac{2}{3}{{(1+\log x)}^{3/2}}+c\]
B.            \[{{(1+\log x)}^{3/2}}+c\]
C.            \[2\sqrt{1+\log x}+c\]
D.            \[\sqrt{1+\log x}+c\]
Answer» D.            \[\sqrt{1+\log x}+c\]
4034.

\[\int_{{}}^{{}}{\frac{{{\sec }^{2}}x}{1+\tan x}\ dx=}\]    [MP PET 1987]

A.            \[\log (\cos x+\sin x)+c\]
B.            \[\log ({{\sec }^{2}}x)+c\]
C.            \[\log (1+\tan x)+c\]
D.            \[-\frac{1}{{{(1+\tan x)}^{2}}}+c\]
Answer» D.            \[-\frac{1}{{{(1+\tan x)}^{2}}}+c\]
4035.

\[\int_{{}}^{{}}{\frac{\sin 2x}{{{a}^{2}}+{{b}^{2}}{{\sin }^{2}}x}}\ dx=\] [Roorkee 1977]

A.            \[\frac{1}{{{b}^{2}}}\log ({{a}^{2}}+{{b}^{2}}{{\sin }^{2}}x)+c\] 
B.            \[\frac{1}{b}\log ({{a}^{2}}+{{b}^{2}}{{\sin }^{2}}x)+c\]
C.            \[\log ({{a}^{2}}+{{b}^{2}}{{\sin }^{2}}x)+c\]                               
D.            \[{{b}^{2}}\log ({{a}^{2}}+{{b}^{2}}{{\sin }^{2}}x)+c\]
Answer» B.            \[\frac{1}{b}\log ({{a}^{2}}+{{b}^{2}}{{\sin }^{2}}x)+c\]
4036.

\[\int_{{}}^{{}}{\frac{\sqrt{\tan x}}{\sin x\cos x}}\ dx=\] [Bihar CEE 1974; MP PET 2002; Kerala (Engg.) 2002]

A.            \[2\sqrt{\sec x}+c\]
B.            \[2\sqrt{\tan x}+c\]
C.            \[\frac{2}{\sqrt{\tan x}}+c\]
D.            \[\frac{2}{\sqrt{\sec x}}+c\]
Answer» C.            \[\frac{2}{\sqrt{\tan x}}+c\]
4037.

\[\int_{{}}^{{}}{\frac{{{a}^{x}}}{\sqrt{1-{{a}^{2x}}}}dx=}\] [MNR 1983, 87]

A.            \[\frac{1}{\log a}{{\sin }^{-1}}{{a}^{x}}+c\]
B.            \[{{\sin }^{-1}}{{a}^{x}}+c\]
C.            \[\frac{1}{\log a}{{\cos }^{-1}}{{a}^{x}}+c\]
D.            \[{{\cos }^{-1}}{{a}^{x}}+c\]
Answer» B.            \[{{\sin }^{-1}}{{a}^{x}}+c\]
4038.

\[\int_{{}}^{{}}{\frac{1}{\sqrt{x}}{{\tan }^{4}}\sqrt{x}}{{\sec }^{2}}\sqrt{x}\ dx=\]

A.            \[2{{\tan }^{5}}\sqrt{x}+c\]
B.            \[\frac{1}{5}{{\tan }^{5}}\sqrt{x}+c\]
C.            \[\frac{2}{5}{{\tan }^{5}}\sqrt{x}+c\]
D.            None of these
Answer» D.            None of these
4039.

\[\int_{{}}^{{}}{\frac{{{e}^{\sqrt{x}}}\cos {{e}^{\sqrt{x}}}}{\sqrt{x}}dx}=\]

A.            \[2\sin {{e}^{\sqrt{x}}}\]
B.            \[\sin {{e}^{\sqrt{x}}}\]
C.            \[2\cos {{e}^{\sqrt{x}}}\]
D.            \[-2\sin {{e}^{\sqrt{x}}}\]
Answer» B.            \[\sin {{e}^{\sqrt{x}}}\]
4040.

\[\int_{{}}^{{}}{\frac{{{e}^{{{\tan }^{-1}}x}}}{1+{{x}^{2}}}dx=}\] [MP PET 1987]

A.            \[\log (1+{{x}^{2}})+c\]
B.            \[\log {{e}^{{{\tan }^{-1}}x}}+c\]
C.            \[{{e}^{{{\tan }^{-1}}x}}+c\]
D.            \[{{\tan }^{-1}}{{e}^{{{\tan }^{-1}}x}}+c\]
Answer» D.            \[{{\tan }^{-1}}{{e}^{{{\tan }^{-1}}x}}+c\]
4041.

\[\int_{{}}^{{}}{\frac{\sin x\cos x}{a{{\cos }^{2}}x+b{{\sin }^{2}}x}dx=}\]            [AI CBSE 1988, 89]

A.            \[\frac{1}{2(b-a)}\log (a{{\cos }^{2}}x+b{{\sin }^{2}}x)+c\]
B.            \[\frac{1}{b-a}\log (a{{\cos }^{2}}x+b{{\sin }^{2}}x)+c\]
C.            \[\frac{1}{2}\log (a{{\cos }^{2}}x+b{{\sin }^{2}}x)+c\]                
D.            None of these
Answer» B.            \[\frac{1}{b-a}\log (a{{\cos }^{2}}x+b{{\sin }^{2}}x)+c\]
4042.

\[\int_{{}}^{{}}{\frac{x+1}{\sqrt{1+{{x}^{2}}}}dx}=\]        [MP PET 1991]

A.            \[\sqrt{1+{{x}^{2}}}+{{\tan }^{-1}}x+c\]
B.            \[\sqrt{1+{{x}^{2}}}-\log \{x+\sqrt{1+{{x}^{2}}}\}+c\]
C.            \[\sqrt{1+{{x}^{2}}}+\log \{x+\sqrt{1+{{x}^{2}}}\}+c\]
D.            \[\sqrt{1+{{x}^{2}}}+\log (\sec x+\tan x)+c\]
Answer» D.            \[\sqrt{1+{{x}^{2}}}+\log (\sec x+\tan x)+c\]
4043.

\[\int_{{}}^{{}}{\frac{{{e}^{x}}(x+1)}{{{\cos }^{2}}(x{{e}^{x}})}dx=}\] [Roorkee 1979; MP PET 1995; Pb. CET 2001]

A.            \[\tan (x{{e}^{x}})+c\]
B.            \[\sec (x{{e}^{x}})\tan (x{{e}^{x}})+c\]
C.            \[-\tan (x{{e}^{x}})+c\]
D.            None of these
Answer» B.            \[\sec (x{{e}^{x}})\tan (x{{e}^{x}})+c\]
4044.

\[\int_{{}}^{{}}{x\sqrt{1+{{x}^{2}}}}\ dx=\]                       [MP PET 1989]

A.            \[\frac{1+2{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+c\]
B.            \[\sqrt{1+{{x}^{2}}}+c\]
C.            \[3{{(1+{{x}^{2}})}^{3/2}}+c\]
D.            \[\frac{1}{3}{{(1+{{x}^{2}})}^{3/2}}+c\]
Answer» E.
4045.

\[\int_{{}}^{{}}{\frac{x-2}{x(2\log x-x)}dx}=\]

A.            \[\log (2\log x-x)+c\]
B.            \[\log \left( \frac{1}{2\log x-x} \right)+c\]
C.            \[\log (x-2\log x)+c\]
D.            \[\log \left( \frac{1}{x-2\log x} \right)+c\]
Answer» C.            \[\log (x-2\log x)+c\]
4046.

\[\int_{{}}^{{}}{\frac{\sin 2x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx=}\] [RPET 1995]

A.            \[{{\cot }^{-1}}({{\tan }^{2}}x)+c\]
B.            \[{{\tan }^{-1}}({{\tan }^{2}}x)+c\]
C.            \[{{\cot }^{-1}}({{\cot }^{2}}x)+c\]
D.            \[{{\tan }^{-1}}({{\cot }^{2}}x)+c\]
Answer» C.            \[{{\cot }^{-1}}({{\cot }^{2}}x)+c\]
4047.

\[\int_{{}}^{{}}{\frac{dx}{{{e}^{x}}+{{e}^{-x}}}=}\] [Bihar CEE 1976; MNR 1974]

A.            \[{{\tan }^{-1}}({{e}^{-x}})\]
B.            \[{{\tan }^{-1}}({{e}^{x}})\]
C.            \[\log ({{e}^{x}}-{{e}^{-x}})\]
D.            \[\log ({{e}^{x}}+{{e}^{-x}})\]
Answer» C.            \[\log ({{e}^{x}}-{{e}^{-x}})\]
4048.

\[\int_{{}}^{{}}{{{x}^{2}}\sec {{x}^{3}}\ dx}=\] [MNR 1986; Roorkee 1975]

A.            \[\log (\sec {{x}^{3}}+\tan {{x}^{3}})\]
B.            \[3(\sec {{x}^{3}}+\tan {{x}^{3}})\]
C.            \[\frac{1}{3}\log (\sec {{x}^{3}}+\tan {{x}^{3}})\]
D.            None of these
Answer» D.            None of these
4049.

\[\int_{{}}^{{}}{\frac{dx}{{{e}^{x}}-1}=}\]                         [MP PET 1989]

A.            \[\ln (1-{{e}^{-x}})+c\]
B.            \[-\ln (1-{{e}^{-x}})+c\]
C.            \[\ln ({{e}^{x}}-1)+c\]
D.            None of these
Answer» B.            \[-\ln (1-{{e}^{-x}})+c\]
4050.

\[\int_{{}}^{{}}{{{\sec }^{p}}x\tan x\ dx=}\]

A.            \[\frac{{{\sec }^{p+1}}x}{p+1}+c\]
B.            \[\frac{{{\sec }^{p}}x}{p}+c\]
C.            \[\frac{{{\tan }^{p+1}}x}{p+1}+c\]
D.            \[\frac{{{\tan }^{p}}x}{p}+c\]
Answer» C.            \[\frac{{{\tan }^{p+1}}x}{p+1}+c\]