Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

3501.

The solution of the differential equation \[\frac{dy}{dx}+\frac{3{{x}^{2}}}{1+{{x}^{3}}}y=\frac{{{\sin }^{2}}x}{1+{{x}^{3}}}\] is

A.                 \[y(1+{{x}^{3}})=x+\frac{1}{2}\sin 2x+c\]
B.                 \[y(1+{{x}^{3}})=cx+\frac{1}{2}\sin 2x\]
C.                 \[y(1+{{x}^{3}})=cx-\frac{1}{2}\sin 2x\]
D.                 \[y(1+{{x}^{3}})=\frac{x}{2}-\frac{1}{4}\sin 2x+c\]
Answer» E.
3502.

The solution of the differential equation \[x\frac{dy}{dx}+y={{x}^{2}}+3x+2\] is

A.                 \[xy=\frac{{{x}^{3}}}{3}+\frac{3}{2}{{x}^{2}}+2x+c\]     
B.                 \[xy=\frac{{{x}^{4}}}{4}+{{x}^{3}}+{{x}^{2}}+c\]
C.                 \[xy=\frac{{{x}^{4}}}{4}+\frac{{{x}^{3}}}{3}+{{x}^{2}}+c\]        
D.                 \[xy=\frac{{{x}^{4}}}{4}+{{x}^{3}}+{{x}^{2}}+cx\]
Answer» B.                 \[xy=\frac{{{x}^{4}}}{4}+{{x}^{3}}+{{x}^{2}}+c\]
3503.

The solution of the differential equation \[\frac{dy}{dx}+\frac{y}{x}={{x}^{2}}\]is

A.                 \[4xy={{x}^{4}}+c\]       
B.                 \[xy={{x}^{4}}+c\]
C.                 \[\frac{1}{4}xy={{x}^{4}}+c\]      
D.                 \[xy=4{{x}^{4}}+c\]
Answer» B.                 \[xy={{x}^{4}}+c\]
3504.

The equation of the curve passing through the origin and satisfying the equation \[(1+{{x}^{2}})\frac{dy}{dx}+2xy=4{{x}^{2}}\] is               

A.                 \[3(1+{{x}^{2}})y=4{{x}^{3}}\]
B.                 \[3(1-{{x}^{2}})y=4{{x}^{3}}\]
C.                 \[3(1+{{x}^{2}})={{x}^{3}}\]    
D.                 None of these
Answer» B.                 \[3(1-{{x}^{2}})y=4{{x}^{3}}\]
3505.

An integrating factor for the differential equation \[(1+{{y}^{2}})dx-({{\tan }^{-1}}y-x)dy=0\]         [MP PET 1993]

A.                 \[{{\tan }^{-1}}y\]             
B.                 \[{{e}^{{{\tan }^{-1}}y}}\]
C.                 \[\frac{1}{1+{{y}^{2}}}\]               
D.                 \[\frac{1}{x(1+{{y}^{2}})}\]
Answer» C.                 \[\frac{1}{1+{{y}^{2}}}\]               
3506.

Solution of the differential equation \[\frac{dy}{dx}+\frac{y}{x}=\sin x\] is [Kerala (Engg.) 2005]

A.                 \[x(y+\cos x)=\sin x+c\]     
B.                 \[x(y-\cos x)=\sin x+c\]
C.                 \[x(y\cdot \cos x)=\sin x+c\]
D.                 \[x(y-\cos x)=\cos x+c\]
E.                 \[x(y+\cos x)=\cos x+c\]
Answer» B.                 \[x(y-\cos x)=\sin x+c\]
3507.

Solution of the equation \[(x+\log y)dy+y\,dx=0\] is

A.                 \[xy+y\log y=c\]   
B.                 \[xy+y\log y-y=c\]
C.                 \[xy+\log y-x=c\] 
D.                 None of these
Answer» C.                 \[xy+\log y-x=c\] 
3508.

An integrating factor of the differential equation \[x\frac{dy}{dx}+y\log x=x{{e}^{x}}{{x}^{-\frac{1}{2}\log x}}\], \[(x>0)\] is [Kerala (Engg.) 2005]

A.                 \[{{x}^{\log x}}\]               
B.                 \[{{(\sqrt{x})}^{\log x}}\]
C.                 \[{{(\sqrt{e})}^{\log x}}\] 
D.                 \[{{e}^{{{x}^{2}}}}\]
E.                 \[{{x}^{2}}/2\]
Answer» C.                 \[{{(\sqrt{e})}^{\log x}}\] 
3509.

The solution of \[dy=\cos x(2-y\cos \text{ec}x)dx\] where \[y=2\] when \[x=\frac{\pi }{2}\] is [J & K 2005]

A.                 \[y=\sin x+\text{cosec }x\] 
B.                 \[y=\tan \frac{x}{2}+\cot \frac{x}{2}\]
C.                 \[y=\frac{1}{\sqrt{2}}\sec \frac{x}{2}+\sqrt{2}\cos \frac{x}{2}\]
D.                 None of these
Answer» B.                 \[y=\tan \frac{x}{2}+\cot \frac{x}{2}\]
3510.

The solution of differential equation \[\frac{dy}{dx}+y=1\] is [Pb. CET 2000]

A.                 \[y=1+c\,{{e}^{-x}}\]      
B.                 \[y=1-c\,{{e}^{-x}}\]
C.                 \[y=x+c\,{{e}^{-x}}\]       
D.                 \[y=x-c\,{{e}^{-x}}\]
Answer» B.                 \[y=1-c\,{{e}^{-x}}\]
3511.

Integrating factor of the differential equation \[\frac{dy}{dx}+P(x)y=Q(x)\] is             [UPSEAT 2004]

A.                 \[\int{P\,dx}\]        
B.                 \[\int{Q\,dx}\]
C.                 \[{{e}^{\int{P\,dx}}}\]      
D.                 \[{{e}^{\int{Q\,dx}}}\]
Answer» D.                 \[{{e}^{\int{Q\,dx}}}\]
3512.

To reduce the differential equation \[\frac{dy}{dx}+P(x)y=Q(x).{{y}^{n}}\] to the linear form, the substitution is             [UPSEAT 2004]

A.                 \[v=\frac{1}{{{y}^{n}}}\]
B.                 \[v=\frac{1}{{{y}^{n-1}}}\]
C.                 \[v={{y}^{n}}\] 
D.                 \[v={{y}^{n-1}}\]
Answer» C.                 \[v={{y}^{n}}\] 
3513.

The solution of \[\frac{dy}{dx}+y={{e}^{-x}},\,\,y(0)=0\], is [Kerala (Engg.) 2002]

A.                 \[y={{e}^{-x}}(x-1)\]       
B.                 \[y=x{{e}^{x}}\]
C.                 \[y=x{{e}^{-x}}+1\]        
D.                 \[y=x{{e}^{-x}}\]
Answer» E.
3514.

The solution of \[\frac{dy}{dx}+p(x)y=0\] is   [Kerala (Engg.)  2002]

A.                 \[y=c{{e}^{\int{p\,d\,x}}}\]             
B.                 \[x=c{{e}^{-\int{p\,d\,y}}}\]
C.                 \[y=c{{e}^{-\int{P\,d\,x}}}\]            
D.                 \[x=c{{e}^{\int{p\,d\,y}}}\]
Answer» D.                 \[x=c{{e}^{\int{p\,d\,y}}}\]
3515.

\[y+{{x}^{2}}=\frac{dy}{dx}\] has the solution          [EAMCET 2002]

A.                 \[y+{{x}^{2}}+2x+2=c{{e}^{x}}\]          
B.                 \[y+x+{{x}^{2}}+2=c{{e}^{2x}}\]
C.                 \[y+x+2{{x}^{2}}+2=c{{e}^{x}}\]          
D.                 \[{{y}^{2}}+x+{{x}^{2}}+2=c{{e}^{x}}\]
Answer» B.                 \[y+x+{{x}^{2}}+2=c{{e}^{2x}}\]
3516.

The solution of the equation \[\frac{dy}{dx}+y\tan x={{x}^{m}}\cos x\] is

A.                 \[(m+1)y={{x}^{m+1}}\cos x+c(m+1)\cos x\]
B.                 \[my=({{x}^{m}}+c)\cos x\]
C.                 \[y=({{x}^{m+1}}+c)\cos x\]
D.                 None of these
Answer» B.                 \[my=({{x}^{m}}+c)\cos x\]
3517.

The solution of \[\frac{dy}{dx}+\frac{y}{3}=1\] is         [EAMCET 2002]

A.                 \[y=3+c{{e}^{x/3}}\]      
B.                 \[y=3+c{{e}^{-x/3}}\]
C.                 \[3y=c+{{e}^{x/3}}\]      
D.                 \[3y=c+{{e}^{-x/3}}\]
Answer» C.                 \[3y=c+{{e}^{x/3}}\]      
3518.

Integrating factor of equation \[({{x}^{2}}+1)\frac{dy}{dx}+2xy={{x}^{2}}-1\] is [UPSEAT 2002]

A.                 \[{{x}^{2}}+1\]
B.                 \[\frac{2x}{{{x}^{2}}+1}\]
C.                 \[\frac{{{x}^{2}}-1}{{{x}^{2}}+1}\]         
D.                 None of these
Answer» B.                 \[\frac{2x}{{{x}^{2}}+1}\]
3519.

An integrating factor of the differential equation \[(1-{{x}^{2}})\frac{dy}{dx}-xy=1,\] is        [MP PET 2001]

A.                 ? x          
B.                 \[-\frac{x}{(1-{{x}^{2}})}\]
C.                 \[\sqrt{(1-{{x}^{2}})}\]    
D.                 \[\frac{1}{2}\log (1-{{x}^{2}})\]
Answer» D.                 \[\frac{1}{2}\log (1-{{x}^{2}})\]
3520.

Solution of the differential equation \[\frac{dy}{dx}+y{{\sec }^{2}}x=\tan x{{\sec }^{2}}x\] is         [DCE 2001, 05]

A.                 \[y=\tan x-1+c{{e}^{-\tan x}}\]
B.                 \[{{y}^{2}}=\tan x-1+c{{e}^{\tan x}}\]
C.                 \[y{{e}^{\tan x}}=\tan x-1+c\]        
D.                 \[y{{e}^{-\tan x}}=\tan x-1+c\]
Answer» B.                 \[{{y}^{2}}=\tan x-1+c{{e}^{\tan x}}\]
3521.

The solution of \[\frac{dy}{dx}+2y\,\tan x=\sin x\], is     [DCE 1999]

A.                 \[y\,{{\sec }^{3}}x={{\sec }^{2}}x+c\]       
B.                 \[y\,{{\sec }^{2}}x=\sec x+c\]
C.                 \[y\,\,\sin x=\tan x+c\]          
D.                 None of these
Answer» C.                 \[y\,\,\sin x=\tan x+c\]          
3522.

Solution of \[\cos x\frac{dy}{dx}+y\sin x=1\]is               [MP PET 1999]

A.                 \[y\sec x\tan x=c\] 
B.                 \[y\sec x\tan x=c\]
C.                 \[y\tan x=\sec x+c\]             
D.                 \[y\tan x=\sec x\tan x+c\]
Answer» C.                 \[y\tan x=\sec x+c\]             
3523.

Integrating factor of \[\frac{dy}{dx}+\frac{y}{x}={{x}^{3}}-3\]is              [MP PET 1999]

A.                 \[x\]        
B.                 \[\log x\]
C.                 \[-x\]       
D.                 \[{{e}^{x}}\]
Answer» B.                 \[\log x\]
3524.

Solution of differential equation \[x\frac{dy}{dx}=y+{{x}^{^{2}}}\] is [MP PET 1997]

A.                 \[y={{\log }_{e}}x+\frac{{{x}^{2}}}{2}+a\]             
B.                 \[y=\frac{{{x}^{3}}}{3}+\frac{a}{x}\]
C.                 \[y={{x}^{2}}+ax\]         
D.                 None of these
Answer» D.                 None of these
3525.

The solution of the differential equation \[\frac{dy}{dx}+2y\cot x=3{{x}^{2}}\text{cose}{{\text{c}}^{2}}x\]is

A.                 \[y{{\sin }^{2}}x={{x}^{3}}+c\]
B.                 \[y\sin x=c\]
C.                 \[y\cos {{x}^{2}}=c\]       
D.                 \[y\sin {{x}^{2}}=c\]
Answer» B.                 \[y\sin x=c\]
3526.

The solution of the differential equation \[x\log x\frac{dy}{dx}+y=2\log x\] is

A.                 \[y=\log x+c\]       
B.                 \[y=\log {{x}^{2}}+c\]
C.                 \[y\log x={{(\log x)}^{2}}+c\]        
D.                 \[y=x\log x+c\]
Answer» D.                 \[y=x\log x+c\]
3527.

Integrating factor of the differential equation \[\frac{dy}{dx}+y\tan x-\sec x=0\] is      [MP PET 2002]

A.                 \[{{e}^{\sin x}}\]
B.                 \[\frac{1}{\sin x}\]
C.                 \[\frac{1}{\cos x}\]
D.                 \[{{e}^{\cos x}}\]
Answer» D.                 \[{{e}^{\cos x}}\]
3528.

The integrating factor of the differential equation \[(x\log x)\frac{dy}{dx}+y=2\log x\] is

A.                 \[\log x\] 
B.                 \[\log (\log x)\]
C.                 \[{{e}^{x}}\]      
D.                 \[x\]
Answer» B.                 \[\log (\log x)\]
3529.

Integrating factor of differential equation \[\cos x\frac{dy}{dx}+y\sin x=1\]is              [MP PET 1996]

A.                 \[\cos x\] 
B.                 \[\tan x\]
C.                 \[\sec x\] 
D.                 \[\sin x\]
Answer» D.                 \[\sin x\]
3530.

The integrating factor of the differential equation \[\frac{dy}{dx}=y\tan x-{{y}^{2}}\sec x,\]is               [MP PET 1995; Pb. CET 2002]

A.                 \[\tan x\] 
B.                 \[\sec x\]
C.                 \[-\sec x\]
D.                 \[\cot x\]
Answer» C.                 \[-\sec x\]
3531.

The solution of the equation \[(x+2{{y}^{3}})\frac{dy}{dx}-y=0\] is [MP PET 1998; 2002]

A.                 \[y(1-xy)=Ax\]      
B.                 \[{{y}^{3}}-x=Ay\]
C.                 \[x(1-xy)=Ay\]      
D.                 \[x(1+xy)=Ay\] Where A is any arbitrary constant
Answer» C.                 \[x(1-xy)=Ay\]      
3532.

The solution of the differential equation \[\frac{dy}{dx}+y\cot x=2\cos x\] is

A.                 \[y\sin x+\cos 2x=2c\]         
B.                 \[2y\sin x+\cos x=c\]
C.                 \[y\sin x+\cos x=c\]             
D.                 \[2y\sin x+\cos 2x=c\]
Answer» E.
3533.

The solution of the differential equation \[\frac{dy}{dx}+y=\cos x\]is [AISSE 1990]

A.                 \[y=\frac{1}{2}(\cos x+\sin x)+c{{e}^{-x}}\]              
B.                 \[y=\frac{1}{2}(\cos x-\sin x)+c{{e}^{-x}}\]
C.                 \[y=\cos x+\sin x+c{{e}^{-x}}\]     
D.                 None of these
Answer» B.                 \[y=\frac{1}{2}(\cos x-\sin x)+c{{e}^{-x}}\]
3534.

The solution of the equation \[x\frac{dy}{dx}+3y=x\] is

A.                 \[{{x}^{3}}y+\frac{{{x}^{4}}}{4}+c=0\]
B.                 \[{{x}^{3}}y=\frac{{{x}^{4}}}{4}+c\]
C.                 \[{{x}^{3}}y+\frac{{{x}^{4}}}{4}=0\]     
D.                 None of these
Answer» C.                 \[{{x}^{3}}y+\frac{{{x}^{4}}}{4}=0\]     
3535.

Which of the following equation is linear

A.                 \[\frac{dy}{dx}+x{{y}^{2}}=1\]   
B.                 \[{{x}^{2}}\frac{dy}{dx}+y={{e}^{x}}\]
C.                 \[\frac{dy}{dx}+3y=x{{y}^{2}}\] 
D.                 \[x\frac{dy}{dx}+{{y}^{2}}=\sin x\]
Answer» C.                 \[\frac{dy}{dx}+3y=x{{y}^{2}}\] 
3536.

Which of the following equation is non-linear

A.                 \[\frac{dy}{dx}+\frac{y}{x}=\log x\]
B.                 \[y\frac{dy}{dx}+4x=0\]
C.                 \[dx+dy=0\]         
D.                 \[\frac{dy}{dx}=\cos x\]
Answer» C.                 \[dx+dy=0\]         
3537.

Direction ratios of the line represented by the equation \[x=ay+b,\] \[z=cy+d\] are

A.                                                               (a, 1, c)
B.                                                               (a, b ? d, c)
C.                                                               (c, 1, a)
D.                                                               (b, ac, d)
Answer» B.                                                               (a, b ? d, c)
3538.

The angle between the lines whose direction cosines are proportional to (1, 2, 1) and (2, ?3, 6) is

A.                                                               \[{{\cos }^{-1}}\left( \frac{2}{7\sqrt{6}} \right)\]
B.                                                               \[{{\cos }^{-1}}\left( \frac{1}{7\sqrt{6}} \right)\]
C.                                                               \[{{\cos }^{-1}}\left( \frac{3}{7\sqrt{6}} \right)\]
D.                                                               \[{{\cos }^{-1}}\left( \frac{5}{7\sqrt{6}} \right)\]
Answer» B.                                                               \[{{\cos }^{-1}}\left( \frac{1}{7\sqrt{6}} \right)\]
3539.

Direction ratios of two lines are a, b, c and \[\frac{1}{bc},\frac{1}{ca},\frac{1}{ab}\]. The lines are

A.                                                               Mutually perpendicular
B.                                                               Parallel
C.                                                               Coincident
D.                                                               None of these
Answer» C.                                                               Coincident
3540.

The point of intersection of lines \[\frac{x-4}{5}=\] \[\frac{y-1}{2}=\frac{z}{1}\] and \[\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\] is [AISSE 1986; AMU 2005]

A.                                                               (?1, ?1, ?1)
B.                                                               (?1, ?1, 1)
C.                                                               (1, ?1, ?1)
D.                                                               (?1, 1, ?1)
Answer» B.                                                               (?1, ?1, 1)
3541.

If the angle between the lines whose direction ratios are         2,?1 , 2 and a,  3, 5 be \[45{}^\circ \], then a =

A.                                                               1
B.                                                               2
C.                                                               3
D.                                                               4
Answer» E.
3542.

The angle between the straight lines \[\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}\]and \[\frac{x+1}{-1}=\frac{y-4}{8}=\frac{z-5}{4}\]is [DCE 2005]

A.                                                               \[{{\cos }^{-1}}\left( \frac{13}{9\sqrt{38}} \right)\]
B.                                                               \[{{\cos }^{-1}}\left( \frac{26}{9\sqrt{38}} \right)\]
C.                                                               \[{{\cos }^{-1}}\left( \frac{4}{\sqrt{38}} \right)\]
D.                                                               \[{{\cos }^{-1}}\left( \frac{2\sqrt{2}}{\sqrt{19}} \right)\]
Answer» C.                                                               \[{{\cos }^{-1}}\left( \frac{4}{\sqrt{38}} \right)\]
3543.

The distance of the point (2, 3, 4) from the line \[1-x=\frac{y}{2}=\frac{1}{3}(1+z)\] is [J & K 2005]

A.                                                               \[\frac{1}{7}\sqrt{35}\]
B.                                                               \[\frac{4}{7}\sqrt{35}\]
C.                                                               \[\frac{2}{7}\sqrt{35}\]
D.                                                               \[\frac{3}{7}\sqrt{35}\]
Answer» E.
3544.

The direction cosines of three lines passing through the origin are \[{{l}_{1}},{{m}_{1}},{{n}_{1}};\,{{l}_{2}},{{m}_{2}},{{n}_{2}}\]and \[{{l}_{3}},{{m}_{3}},{{n}_{3}}\]. The lines will be coplanar, if

A.                                                               \[\left| \,\begin{matrix}    {{l}_{1}} & {{n}_{1}} & {{m}_{1}}  \\    {{l}_{2}} & {{n}_{2}} & {{m}_{2}}  \\    {{l}_{3}} & {{n}_{3}} & {{m}_{3}}  \\ \end{matrix}\, \right|=0\]
B.                                                               \[\left| \,\begin{matrix}    {{l}_{1}} & {{m}_{2}} & {{n}_{3}}  \\    {{l}_{2}} & {{m}_{3}} & {{n}_{1}}  \\    {{l}_{3}} & {{m}_{1}} & {{n}_{2}}  \\ \end{matrix}\, \right|=0\]
C.                                                               \[{{l}_{1}}{{l}_{2}}{{l}_{3}}+{{m}_{1}}{{m}_{2}}{{m}_{3}}+{{n}_{1}}{{n}_{2}}{{n}_{3}}=0\]
D.                                                               None of these
Answer» B.                                                               \[\left| \,\begin{matrix}    {{l}_{1}} & {{m}_{2}} & {{n}_{3}}  \\    {{l}_{2}} & {{m}_{3}} & {{n}_{1}}  \\    {{l}_{3}} & {{m}_{1}} & {{n}_{2}}  \\ \end{matrix}\, \right|=0\]
3545.

If the lines \[\frac{x-1}{-3}=\frac{y-2}{2k}=\frac{z-3}{2}\], \[\frac{x-1}{3k}=\frac{y-5}{1}=\frac{z-6}{-5}\] are at right angles, then k = [MP PET 1997, 2001]

A.                                                               ?10
B.                                                               \[\frac{10}{7}\]
C.                                                               \[\frac{-10}{7}\]
D.                                                               \[\frac{-7}{10}\]
Answer» D.                                                               \[\frac{-7}{10}\]
3546.

If \[\frac{x-1}{l}=\frac{y-2}{m}=\frac{z+1}{n}\]is the equation of the line through   (1, 2, ?1) and (?1, 0, 1), then (l, m, n) is          [MP PET 1992]

A.                                                               (?1, 0, 1)
B.                                                               (1, 1, ?1)
C.                                                               (1, 2, ?1)
D.                                                               (0, 1, 0)
Answer» C.                                                               (1, 2, ?1)
3547.

The angle between the lines \[2x=3y=-z\] and \[6x=-y=-4z\],  is [MP PET 1994, 99; AIEEE 2005]

A.                                                               \[0{}^\circ \]
B.                                                               \[30{}^\circ \]
C.                                                               \[45{}^\circ \]
D.                                                               \[90{}^\circ \]
Answer» E.
3548.

A line makes the same angle\[\theta \], with each of the x and z?axis. If the angle \[\beta \], which it makes with y-axis is such that \[{{\sin }^{2}}\beta =3{{\sin }^{2}}\theta ,\]then \[{{\cos }^{2}}\theta \]equals  [AIEEE 2004]

A.                                                               \[\frac{3}{5}\]
B.                                                               \[\frac{2}{3}\]
C.                                                               \[\frac{1}{5}\]
D.                                                               None of these
Answer» B.                                                               \[\frac{2}{3}\]
3549.

The point of intersection of the lines \[\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1},\] \[\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}\] is [MP PET 2004]

A.                                                               \[21,\,\frac{5}{3},\frac{10}{3}\]
B.                                                               \[(\,2,\,10,\,4)\]
C.                                                               \[(-3,\,3,\,6)\]
D.                                                               \[(5,\,7,\,-2)\]
Answer» B.                                                               \[(\,2,\,10,\,4)\]
3550.

If \[A,B,C,D\]are the points (2, 3, ?1),(3, 5, ?3), (1, 2, 3),       (3, 5, 7) respectively, then the angle between AB and CD is                                                                                    [Orissa JEE 2003]

A.                                                               \[\frac{\pi }{2}\]
B.                                                               \[\frac{\pi }{3}\]
C.                                                               \[\frac{\pi }{4}\]
D.                                                               \[\frac{\pi }{6}\]
Answer» B.                                                               \[\frac{\pi }{3}\]