MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 3501. |
The solution of the differential equation \[\frac{dy}{dx}+\frac{3{{x}^{2}}}{1+{{x}^{3}}}y=\frac{{{\sin }^{2}}x}{1+{{x}^{3}}}\] is |
| A. | \[y(1+{{x}^{3}})=x+\frac{1}{2}\sin 2x+c\] |
| B. | \[y(1+{{x}^{3}})=cx+\frac{1}{2}\sin 2x\] |
| C. | \[y(1+{{x}^{3}})=cx-\frac{1}{2}\sin 2x\] |
| D. | \[y(1+{{x}^{3}})=\frac{x}{2}-\frac{1}{4}\sin 2x+c\] |
| Answer» E. | |
| 3502. |
The solution of the differential equation \[x\frac{dy}{dx}+y={{x}^{2}}+3x+2\] is |
| A. | \[xy=\frac{{{x}^{3}}}{3}+\frac{3}{2}{{x}^{2}}+2x+c\] |
| B. | \[xy=\frac{{{x}^{4}}}{4}+{{x}^{3}}+{{x}^{2}}+c\] |
| C. | \[xy=\frac{{{x}^{4}}}{4}+\frac{{{x}^{3}}}{3}+{{x}^{2}}+c\] |
| D. | \[xy=\frac{{{x}^{4}}}{4}+{{x}^{3}}+{{x}^{2}}+cx\] |
| Answer» B. \[xy=\frac{{{x}^{4}}}{4}+{{x}^{3}}+{{x}^{2}}+c\] | |
| 3503. |
The solution of the differential equation \[\frac{dy}{dx}+\frac{y}{x}={{x}^{2}}\]is |
| A. | \[4xy={{x}^{4}}+c\] |
| B. | \[xy={{x}^{4}}+c\] |
| C. | \[\frac{1}{4}xy={{x}^{4}}+c\] |
| D. | \[xy=4{{x}^{4}}+c\] |
| Answer» B. \[xy={{x}^{4}}+c\] | |
| 3504. |
The equation of the curve passing through the origin and satisfying the equation \[(1+{{x}^{2}})\frac{dy}{dx}+2xy=4{{x}^{2}}\] is |
| A. | \[3(1+{{x}^{2}})y=4{{x}^{3}}\] |
| B. | \[3(1-{{x}^{2}})y=4{{x}^{3}}\] |
| C. | \[3(1+{{x}^{2}})={{x}^{3}}\] |
| D. | None of these |
| Answer» B. \[3(1-{{x}^{2}})y=4{{x}^{3}}\] | |
| 3505. |
An integrating factor for the differential equation \[(1+{{y}^{2}})dx-({{\tan }^{-1}}y-x)dy=0\] [MP PET 1993] |
| A. | \[{{\tan }^{-1}}y\] |
| B. | \[{{e}^{{{\tan }^{-1}}y}}\] |
| C. | \[\frac{1}{1+{{y}^{2}}}\] |
| D. | \[\frac{1}{x(1+{{y}^{2}})}\] |
| Answer» C. \[\frac{1}{1+{{y}^{2}}}\] | |
| 3506. |
Solution of the differential equation \[\frac{dy}{dx}+\frac{y}{x}=\sin x\] is [Kerala (Engg.) 2005] |
| A. | \[x(y+\cos x)=\sin x+c\] |
| B. | \[x(y-\cos x)=\sin x+c\] |
| C. | \[x(y\cdot \cos x)=\sin x+c\] |
| D. | \[x(y-\cos x)=\cos x+c\] |
| E. | \[x(y+\cos x)=\cos x+c\] |
| Answer» B. \[x(y-\cos x)=\sin x+c\] | |
| 3507. |
Solution of the equation \[(x+\log y)dy+y\,dx=0\] is |
| A. | \[xy+y\log y=c\] |
| B. | \[xy+y\log y-y=c\] |
| C. | \[xy+\log y-x=c\] |
| D. | None of these |
| Answer» C. \[xy+\log y-x=c\] | |
| 3508. |
An integrating factor of the differential equation \[x\frac{dy}{dx}+y\log x=x{{e}^{x}}{{x}^{-\frac{1}{2}\log x}}\], \[(x>0)\] is [Kerala (Engg.) 2005] |
| A. | \[{{x}^{\log x}}\] |
| B. | \[{{(\sqrt{x})}^{\log x}}\] |
| C. | \[{{(\sqrt{e})}^{\log x}}\] |
| D. | \[{{e}^{{{x}^{2}}}}\] |
| E. | \[{{x}^{2}}/2\] |
| Answer» C. \[{{(\sqrt{e})}^{\log x}}\] | |
| 3509. |
The solution of \[dy=\cos x(2-y\cos \text{ec}x)dx\] where \[y=2\] when \[x=\frac{\pi }{2}\] is [J & K 2005] |
| A. | \[y=\sin x+\text{cosec }x\] |
| B. | \[y=\tan \frac{x}{2}+\cot \frac{x}{2}\] |
| C. | \[y=\frac{1}{\sqrt{2}}\sec \frac{x}{2}+\sqrt{2}\cos \frac{x}{2}\] |
| D. | None of these |
| Answer» B. \[y=\tan \frac{x}{2}+\cot \frac{x}{2}\] | |
| 3510. |
The solution of differential equation \[\frac{dy}{dx}+y=1\] is [Pb. CET 2000] |
| A. | \[y=1+c\,{{e}^{-x}}\] |
| B. | \[y=1-c\,{{e}^{-x}}\] |
| C. | \[y=x+c\,{{e}^{-x}}\] |
| D. | \[y=x-c\,{{e}^{-x}}\] |
| Answer» B. \[y=1-c\,{{e}^{-x}}\] | |
| 3511. |
Integrating factor of the differential equation \[\frac{dy}{dx}+P(x)y=Q(x)\] is [UPSEAT 2004] |
| A. | \[\int{P\,dx}\] |
| B. | \[\int{Q\,dx}\] |
| C. | \[{{e}^{\int{P\,dx}}}\] |
| D. | \[{{e}^{\int{Q\,dx}}}\] |
| Answer» D. \[{{e}^{\int{Q\,dx}}}\] | |
| 3512. |
To reduce the differential equation \[\frac{dy}{dx}+P(x)y=Q(x).{{y}^{n}}\] to the linear form, the substitution is [UPSEAT 2004] |
| A. | \[v=\frac{1}{{{y}^{n}}}\] |
| B. | \[v=\frac{1}{{{y}^{n-1}}}\] |
| C. | \[v={{y}^{n}}\] |
| D. | \[v={{y}^{n-1}}\] |
| Answer» C. \[v={{y}^{n}}\] | |
| 3513. |
The solution of \[\frac{dy}{dx}+y={{e}^{-x}},\,\,y(0)=0\], is [Kerala (Engg.) 2002] |
| A. | \[y={{e}^{-x}}(x-1)\] |
| B. | \[y=x{{e}^{x}}\] |
| C. | \[y=x{{e}^{-x}}+1\] |
| D. | \[y=x{{e}^{-x}}\] |
| Answer» E. | |
| 3514. |
The solution of \[\frac{dy}{dx}+p(x)y=0\] is [Kerala (Engg.) 2002] |
| A. | \[y=c{{e}^{\int{p\,d\,x}}}\] |
| B. | \[x=c{{e}^{-\int{p\,d\,y}}}\] |
| C. | \[y=c{{e}^{-\int{P\,d\,x}}}\] |
| D. | \[x=c{{e}^{\int{p\,d\,y}}}\] |
| Answer» D. \[x=c{{e}^{\int{p\,d\,y}}}\] | |
| 3515. |
\[y+{{x}^{2}}=\frac{dy}{dx}\] has the solution [EAMCET 2002] |
| A. | \[y+{{x}^{2}}+2x+2=c{{e}^{x}}\] |
| B. | \[y+x+{{x}^{2}}+2=c{{e}^{2x}}\] |
| C. | \[y+x+2{{x}^{2}}+2=c{{e}^{x}}\] |
| D. | \[{{y}^{2}}+x+{{x}^{2}}+2=c{{e}^{x}}\] |
| Answer» B. \[y+x+{{x}^{2}}+2=c{{e}^{2x}}\] | |
| 3516. |
The solution of the equation \[\frac{dy}{dx}+y\tan x={{x}^{m}}\cos x\] is |
| A. | \[(m+1)y={{x}^{m+1}}\cos x+c(m+1)\cos x\] |
| B. | \[my=({{x}^{m}}+c)\cos x\] |
| C. | \[y=({{x}^{m+1}}+c)\cos x\] |
| D. | None of these |
| Answer» B. \[my=({{x}^{m}}+c)\cos x\] | |
| 3517. |
The solution of \[\frac{dy}{dx}+\frac{y}{3}=1\] is [EAMCET 2002] |
| A. | \[y=3+c{{e}^{x/3}}\] |
| B. | \[y=3+c{{e}^{-x/3}}\] |
| C. | \[3y=c+{{e}^{x/3}}\] |
| D. | \[3y=c+{{e}^{-x/3}}\] |
| Answer» C. \[3y=c+{{e}^{x/3}}\] | |
| 3518. |
Integrating factor of equation \[({{x}^{2}}+1)\frac{dy}{dx}+2xy={{x}^{2}}-1\] is [UPSEAT 2002] |
| A. | \[{{x}^{2}}+1\] |
| B. | \[\frac{2x}{{{x}^{2}}+1}\] |
| C. | \[\frac{{{x}^{2}}-1}{{{x}^{2}}+1}\] |
| D. | None of these |
| Answer» B. \[\frac{2x}{{{x}^{2}}+1}\] | |
| 3519. |
An integrating factor of the differential equation \[(1-{{x}^{2}})\frac{dy}{dx}-xy=1,\] is [MP PET 2001] |
| A. | ? x |
| B. | \[-\frac{x}{(1-{{x}^{2}})}\] |
| C. | \[\sqrt{(1-{{x}^{2}})}\] |
| D. | \[\frac{1}{2}\log (1-{{x}^{2}})\] |
| Answer» D. \[\frac{1}{2}\log (1-{{x}^{2}})\] | |
| 3520. |
Solution of the differential equation \[\frac{dy}{dx}+y{{\sec }^{2}}x=\tan x{{\sec }^{2}}x\] is [DCE 2001, 05] |
| A. | \[y=\tan x-1+c{{e}^{-\tan x}}\] |
| B. | \[{{y}^{2}}=\tan x-1+c{{e}^{\tan x}}\] |
| C. | \[y{{e}^{\tan x}}=\tan x-1+c\] |
| D. | \[y{{e}^{-\tan x}}=\tan x-1+c\] |
| Answer» B. \[{{y}^{2}}=\tan x-1+c{{e}^{\tan x}}\] | |
| 3521. |
The solution of \[\frac{dy}{dx}+2y\,\tan x=\sin x\], is [DCE 1999] |
| A. | \[y\,{{\sec }^{3}}x={{\sec }^{2}}x+c\] |
| B. | \[y\,{{\sec }^{2}}x=\sec x+c\] |
| C. | \[y\,\,\sin x=\tan x+c\] |
| D. | None of these |
| Answer» C. \[y\,\,\sin x=\tan x+c\] | |
| 3522. |
Solution of \[\cos x\frac{dy}{dx}+y\sin x=1\]is [MP PET 1999] |
| A. | \[y\sec x\tan x=c\] |
| B. | \[y\sec x\tan x=c\] |
| C. | \[y\tan x=\sec x+c\] |
| D. | \[y\tan x=\sec x\tan x+c\] |
| Answer» C. \[y\tan x=\sec x+c\] | |
| 3523. |
Integrating factor of \[\frac{dy}{dx}+\frac{y}{x}={{x}^{3}}-3\]is [MP PET 1999] |
| A. | \[x\] |
| B. | \[\log x\] |
| C. | \[-x\] |
| D. | \[{{e}^{x}}\] |
| Answer» B. \[\log x\] | |
| 3524. |
Solution of differential equation \[x\frac{dy}{dx}=y+{{x}^{^{2}}}\] is [MP PET 1997] |
| A. | \[y={{\log }_{e}}x+\frac{{{x}^{2}}}{2}+a\] |
| B. | \[y=\frac{{{x}^{3}}}{3}+\frac{a}{x}\] |
| C. | \[y={{x}^{2}}+ax\] |
| D. | None of these |
| Answer» D. None of these | |
| 3525. |
The solution of the differential equation \[\frac{dy}{dx}+2y\cot x=3{{x}^{2}}\text{cose}{{\text{c}}^{2}}x\]is |
| A. | \[y{{\sin }^{2}}x={{x}^{3}}+c\] |
| B. | \[y\sin x=c\] |
| C. | \[y\cos {{x}^{2}}=c\] |
| D. | \[y\sin {{x}^{2}}=c\] |
| Answer» B. \[y\sin x=c\] | |
| 3526. |
The solution of the differential equation \[x\log x\frac{dy}{dx}+y=2\log x\] is |
| A. | \[y=\log x+c\] |
| B. | \[y=\log {{x}^{2}}+c\] |
| C. | \[y\log x={{(\log x)}^{2}}+c\] |
| D. | \[y=x\log x+c\] |
| Answer» D. \[y=x\log x+c\] | |
| 3527. |
Integrating factor of the differential equation \[\frac{dy}{dx}+y\tan x-\sec x=0\] is [MP PET 2002] |
| A. | \[{{e}^{\sin x}}\] |
| B. | \[\frac{1}{\sin x}\] |
| C. | \[\frac{1}{\cos x}\] |
| D. | \[{{e}^{\cos x}}\] |
| Answer» D. \[{{e}^{\cos x}}\] | |
| 3528. |
The integrating factor of the differential equation \[(x\log x)\frac{dy}{dx}+y=2\log x\] is |
| A. | \[\log x\] |
| B. | \[\log (\log x)\] |
| C. | \[{{e}^{x}}\] |
| D. | \[x\] |
| Answer» B. \[\log (\log x)\] | |
| 3529. |
Integrating factor of differential equation \[\cos x\frac{dy}{dx}+y\sin x=1\]is [MP PET 1996] |
| A. | \[\cos x\] |
| B. | \[\tan x\] |
| C. | \[\sec x\] |
| D. | \[\sin x\] |
| Answer» D. \[\sin x\] | |
| 3530. |
The integrating factor of the differential equation \[\frac{dy}{dx}=y\tan x-{{y}^{2}}\sec x,\]is [MP PET 1995; Pb. CET 2002] |
| A. | \[\tan x\] |
| B. | \[\sec x\] |
| C. | \[-\sec x\] |
| D. | \[\cot x\] |
| Answer» C. \[-\sec x\] | |
| 3531. |
The solution of the equation \[(x+2{{y}^{3}})\frac{dy}{dx}-y=0\] is [MP PET 1998; 2002] |
| A. | \[y(1-xy)=Ax\] |
| B. | \[{{y}^{3}}-x=Ay\] |
| C. | \[x(1-xy)=Ay\] |
| D. | \[x(1+xy)=Ay\] Where A is any arbitrary constant |
| Answer» C. \[x(1-xy)=Ay\] | |
| 3532. |
The solution of the differential equation \[\frac{dy}{dx}+y\cot x=2\cos x\] is |
| A. | \[y\sin x+\cos 2x=2c\] |
| B. | \[2y\sin x+\cos x=c\] |
| C. | \[y\sin x+\cos x=c\] |
| D. | \[2y\sin x+\cos 2x=c\] |
| Answer» E. | |
| 3533. |
The solution of the differential equation \[\frac{dy}{dx}+y=\cos x\]is [AISSE 1990] |
| A. | \[y=\frac{1}{2}(\cos x+\sin x)+c{{e}^{-x}}\] |
| B. | \[y=\frac{1}{2}(\cos x-\sin x)+c{{e}^{-x}}\] |
| C. | \[y=\cos x+\sin x+c{{e}^{-x}}\] |
| D. | None of these |
| Answer» B. \[y=\frac{1}{2}(\cos x-\sin x)+c{{e}^{-x}}\] | |
| 3534. |
The solution of the equation \[x\frac{dy}{dx}+3y=x\] is |
| A. | \[{{x}^{3}}y+\frac{{{x}^{4}}}{4}+c=0\] |
| B. | \[{{x}^{3}}y=\frac{{{x}^{4}}}{4}+c\] |
| C. | \[{{x}^{3}}y+\frac{{{x}^{4}}}{4}=0\] |
| D. | None of these |
| Answer» C. \[{{x}^{3}}y+\frac{{{x}^{4}}}{4}=0\] | |
| 3535. |
Which of the following equation is linear |
| A. | \[\frac{dy}{dx}+x{{y}^{2}}=1\] |
| B. | \[{{x}^{2}}\frac{dy}{dx}+y={{e}^{x}}\] |
| C. | \[\frac{dy}{dx}+3y=x{{y}^{2}}\] |
| D. | \[x\frac{dy}{dx}+{{y}^{2}}=\sin x\] |
| Answer» C. \[\frac{dy}{dx}+3y=x{{y}^{2}}\] | |
| 3536. |
Which of the following equation is non-linear |
| A. | \[\frac{dy}{dx}+\frac{y}{x}=\log x\] |
| B. | \[y\frac{dy}{dx}+4x=0\] |
| C. | \[dx+dy=0\] |
| D. | \[\frac{dy}{dx}=\cos x\] |
| Answer» C. \[dx+dy=0\] | |
| 3537. |
Direction ratios of the line represented by the equation \[x=ay+b,\] \[z=cy+d\] are |
| A. | (a, 1, c) |
| B. | (a, b ? d, c) |
| C. | (c, 1, a) |
| D. | (b, ac, d) |
| Answer» B. (a, b ? d, c) | |
| 3538. |
The angle between the lines whose direction cosines are proportional to (1, 2, 1) and (2, ?3, 6) is |
| A. | \[{{\cos }^{-1}}\left( \frac{2}{7\sqrt{6}} \right)\] |
| B. | \[{{\cos }^{-1}}\left( \frac{1}{7\sqrt{6}} \right)\] |
| C. | \[{{\cos }^{-1}}\left( \frac{3}{7\sqrt{6}} \right)\] |
| D. | \[{{\cos }^{-1}}\left( \frac{5}{7\sqrt{6}} \right)\] |
| Answer» B. \[{{\cos }^{-1}}\left( \frac{1}{7\sqrt{6}} \right)\] | |
| 3539. |
Direction ratios of two lines are a, b, c and \[\frac{1}{bc},\frac{1}{ca},\frac{1}{ab}\]. The lines are |
| A. | Mutually perpendicular |
| B. | Parallel |
| C. | Coincident |
| D. | None of these |
| Answer» C. Coincident | |
| 3540. |
The point of intersection of lines \[\frac{x-4}{5}=\] \[\frac{y-1}{2}=\frac{z}{1}\] and \[\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\] is [AISSE 1986; AMU 2005] |
| A. | (?1, ?1, ?1) |
| B. | (?1, ?1, 1) |
| C. | (1, ?1, ?1) |
| D. | (?1, 1, ?1) |
| Answer» B. (?1, ?1, 1) | |
| 3541. |
If the angle between the lines whose direction ratios are 2,?1 , 2 and a, 3, 5 be \[45{}^\circ \], then a = |
| A. | 1 |
| B. | 2 |
| C. | 3 |
| D. | 4 |
| Answer» E. | |
| 3542. |
The angle between the straight lines \[\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}\]and \[\frac{x+1}{-1}=\frac{y-4}{8}=\frac{z-5}{4}\]is [DCE 2005] |
| A. | \[{{\cos }^{-1}}\left( \frac{13}{9\sqrt{38}} \right)\] |
| B. | \[{{\cos }^{-1}}\left( \frac{26}{9\sqrt{38}} \right)\] |
| C. | \[{{\cos }^{-1}}\left( \frac{4}{\sqrt{38}} \right)\] |
| D. | \[{{\cos }^{-1}}\left( \frac{2\sqrt{2}}{\sqrt{19}} \right)\] |
| Answer» C. \[{{\cos }^{-1}}\left( \frac{4}{\sqrt{38}} \right)\] | |
| 3543. |
The distance of the point (2, 3, 4) from the line \[1-x=\frac{y}{2}=\frac{1}{3}(1+z)\] is [J & K 2005] |
| A. | \[\frac{1}{7}\sqrt{35}\] |
| B. | \[\frac{4}{7}\sqrt{35}\] |
| C. | \[\frac{2}{7}\sqrt{35}\] |
| D. | \[\frac{3}{7}\sqrt{35}\] |
| Answer» E. | |
| 3544. |
The direction cosines of three lines passing through the origin are \[{{l}_{1}},{{m}_{1}},{{n}_{1}};\,{{l}_{2}},{{m}_{2}},{{n}_{2}}\]and \[{{l}_{3}},{{m}_{3}},{{n}_{3}}\]. The lines will be coplanar, if |
| A. | \[\left| \,\begin{matrix} {{l}_{1}} & {{n}_{1}} & {{m}_{1}} \\ {{l}_{2}} & {{n}_{2}} & {{m}_{2}} \\ {{l}_{3}} & {{n}_{3}} & {{m}_{3}} \\ \end{matrix}\, \right|=0\] |
| B. | \[\left| \,\begin{matrix} {{l}_{1}} & {{m}_{2}} & {{n}_{3}} \\ {{l}_{2}} & {{m}_{3}} & {{n}_{1}} \\ {{l}_{3}} & {{m}_{1}} & {{n}_{2}} \\ \end{matrix}\, \right|=0\] |
| C. | \[{{l}_{1}}{{l}_{2}}{{l}_{3}}+{{m}_{1}}{{m}_{2}}{{m}_{3}}+{{n}_{1}}{{n}_{2}}{{n}_{3}}=0\] |
| D. | None of these |
| Answer» B. \[\left| \,\begin{matrix} {{l}_{1}} & {{m}_{2}} & {{n}_{3}} \\ {{l}_{2}} & {{m}_{3}} & {{n}_{1}} \\ {{l}_{3}} & {{m}_{1}} & {{n}_{2}} \\ \end{matrix}\, \right|=0\] | |
| 3545. |
If the lines \[\frac{x-1}{-3}=\frac{y-2}{2k}=\frac{z-3}{2}\], \[\frac{x-1}{3k}=\frac{y-5}{1}=\frac{z-6}{-5}\] are at right angles, then k = [MP PET 1997, 2001] |
| A. | ?10 |
| B. | \[\frac{10}{7}\] |
| C. | \[\frac{-10}{7}\] |
| D. | \[\frac{-7}{10}\] |
| Answer» D. \[\frac{-7}{10}\] | |
| 3546. |
If \[\frac{x-1}{l}=\frac{y-2}{m}=\frac{z+1}{n}\]is the equation of the line through (1, 2, ?1) and (?1, 0, 1), then (l, m, n) is [MP PET 1992] |
| A. | (?1, 0, 1) |
| B. | (1, 1, ?1) |
| C. | (1, 2, ?1) |
| D. | (0, 1, 0) |
| Answer» C. (1, 2, ?1) | |
| 3547. |
The angle between the lines \[2x=3y=-z\] and \[6x=-y=-4z\], is [MP PET 1994, 99; AIEEE 2005] |
| A. | \[0{}^\circ \] |
| B. | \[30{}^\circ \] |
| C. | \[45{}^\circ \] |
| D. | \[90{}^\circ \] |
| Answer» E. | |
| 3548. |
A line makes the same angle\[\theta \], with each of the x and z?axis. If the angle \[\beta \], which it makes with y-axis is such that \[{{\sin }^{2}}\beta =3{{\sin }^{2}}\theta ,\]then \[{{\cos }^{2}}\theta \]equals [AIEEE 2004] |
| A. | \[\frac{3}{5}\] |
| B. | \[\frac{2}{3}\] |
| C. | \[\frac{1}{5}\] |
| D. | None of these |
| Answer» B. \[\frac{2}{3}\] | |
| 3549. |
The point of intersection of the lines \[\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1},\] \[\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}\] is [MP PET 2004] |
| A. | \[21,\,\frac{5}{3},\frac{10}{3}\] |
| B. | \[(\,2,\,10,\,4)\] |
| C. | \[(-3,\,3,\,6)\] |
| D. | \[(5,\,7,\,-2)\] |
| Answer» B. \[(\,2,\,10,\,4)\] | |
| 3550. |
If \[A,B,C,D\]are the points (2, 3, ?1),(3, 5, ?3), (1, 2, 3), (3, 5, 7) respectively, then the angle between AB and CD is [Orissa JEE 2003] |
| A. | \[\frac{\pi }{2}\] |
| B. | \[\frac{\pi }{3}\] |
| C. | \[\frac{\pi }{4}\] |
| D. | \[\frac{\pi }{6}\] |
| Answer» B. \[\frac{\pi }{3}\] | |