Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

3401.

For every positive integral value of n, \[{{3}^{n}}>{{n}^{3}}\] when

A. n > 2
B. n ³ 3
C. n ³ 4
D. n < 4
Answer» D. n < 4
3402.

For positive integer n, \[{{10}^{n-2}}>81n\], if

A. n > 5
B. n ³ 5
C. n < 5
D. n > 6
Answer» C. n < 5
3403.

For every positive integer n, \[{{2}^{n}}

A. n < 4
B. n ³ 4
C. n < 3
D. None of these
Answer» C. n < 3
3404.

For all positive integral values of n, \[{{3}^{2n}}-2n+1\] is divisible by

A. 2
B. 4
C. 8
D. 12
Answer» B. 4
3405.

\[\left( \frac{a-b}{a} \right)+\frac{1}{2}{{\left( \frac{a-b}{a} \right)}^{2}}+\frac{1}{3}\,{{\left( \frac{a-b}{a} \right)}^{3}}+.....=\] [MNR 1979; MP PET 1990; UPSEAT 2001, 02; AMU 2005]

A. \[{{\log }_{e}}(a-b)\]
B. \[{{\log }_{e}}\left( \frac{a}{b} \right)\]
C. \[{{\log }_{e}}\left( \frac{b}{a} \right)\]
D.  \[{{e}^{\left( \frac{a-b}{a} \right)}}\]
Answer» C. \[{{\log }_{e}}\left( \frac{b}{a} \right)\]
3406.

\[{{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)=\]

A. \[2\,\left[ x+\frac{{{x}^{3}}}{3}+\frac{{{x}^{5}}}{5}+......\infty  \right]\]
B.  \[\,\left[ x+\frac{{{x}^{3}}}{3}+\frac{{{x}^{5}}}{5}+......\infty  \right]\]
C. \[2\,\left[ \frac{1}{x}+\frac{1}{3{{x}^{3}}}+\frac{1}{5{{x}^{5}}}+...\infty  \right]\]
D.  \[\,\left[ \frac{1}{x}+\frac{1}{3{{x}^{3}}}+\frac{1}{5{{x}^{5}}}+...\infty  \right]\]
Answer» D.  \[\,\left[ \frac{1}{x}+\frac{1}{3{{x}^{3}}}+\frac{1}{5{{x}^{5}}}+...\infty  \right]\]
3407.

\[\frac{1}{x+1}+\frac{1}{2\,{{(x+1)}^{2}}}+\frac{1}{3\,{{(x+1)}^{3}}}+....\infty =\]

A.  \[{{\log }_{e}}\left( 1+\frac{1}{x} \right)\]
B. \[{{\log }_{e}}\left( 1-\frac{1}{x} \right)\]
C. \[{{\log }_{e}}\left( \frac{x}{x+1} \right)\]
D. None of these
Answer» B. \[{{\log }_{e}}\left( 1-\frac{1}{x} \right)\]
3408.

\[{{\log }_{e}}\sqrt{\frac{1+x}{1-x}}=\]

A. \[{{\log }_{e}}\frac{1}{2}\]
B. \[2\,\left[ x+\frac{{{x}^{3}}}{3}+\frac{{{x}^{5}}}{5}+.....\infty  \right]\]
C. \[2\,\left[ {{x}^{2}}+\frac{{{x}^{4}}}{4}+\frac{{{x}^{6}}}{6}+.....\infty  \right]\]
D. None of these
Answer» B. \[2\,\left[ x+\frac{{{x}^{3}}}{3}+\frac{{{x}^{5}}}{5}+.....\infty  \right]\]
3409.

\[\frac{1}{1\,.\,2\,.\,3}+\frac{1}{3\,.\,4.\,5}+\frac{1}{5\,.\,6.\,7}+.....\infty =\]

A. \[{{\log }_{e}}\sqrt{2}\]
B. \[{{\log }_{e}}2-\frac{1}{2}\]
C. \[{{\log }_{e}}2\]
D. \[{{\log }_{e}}4\]
Answer» C. \[{{\log }_{e}}2\]
3410.

\[{{e}^{\left( x\,-\,\frac{1}{2}{{(x\,-\,1)}^{2}}\,+\,\frac{1}{3}{{(x\,-\,1)}^{3}}\,-\,\frac{1}{4}{{(x\,-\,1)}^{4}}+....... \right)}}\]  is equal to [DCE 2001]

A. \[\log x\]
B. \[\log (x-1)\]
C. x
D. None of these
Answer» E.
3411.

In \[n=(1999)\,!\] then \[\sum\limits_{x=1}^{1999}{{{\log }_{n}}x}\] is equal to  [AMU 2002]

A. 1
B. 0
C. \[\sqrt[1999]{1999}\]
D. -1
Answer» B. 0
3412.

The coefficient of \[{{n}^{-r}}\]in the expansion of \[{{\log }_{10}}\left( \frac{n}{n-1} \right)\] is

A. \[\frac{1}{r\,{{\log }_{e}}10}\]
B. \[-\frac{1}{r{{\log }_{e}}10}\]
C. \[-\frac{1}{r!{{\log }_{e}}10}\]
D. None of these
Answer» B. \[-\frac{1}{r{{\log }_{e}}10}\]
3413.

The coefficient of \[{{x}^{n}}\] in the expansion of \[{{\log }_{e}}(1+3x+2{{x}^{2}})\] is [UPSEAT 2001]

A. \[{{(-1)}^{n}}\left[ \frac{{{2}^{n}}+1}{n} \right]\]
B. \[\frac{{{(-1)}^{n+1}}}{n}[{{2}^{n}}+1]\]
C. \[\frac{{{2}^{n}}+1}{n}\]
D. None of these
Answer» C. \[\frac{{{2}^{n}}+1}{n}\]
3414.

The coefficient of \[{{x}^{n}}\] in the expansion of \[{{\log }_{a}}(1+x)\]  is

A. \[\frac{{{(-1)}^{n-1}}}{n}\]
B. \[\frac{{{(-1)}^{n-1}}}{n}{{\log }_{a}}e\]
C. \[\frac{{{(-1)}^{n-1}}}{n}{{\log }_{e}}a\]
D. \[\frac{{{(-1)}^{n}}}{n}{{\log }_{a}}e\]
Answer» C. \[\frac{{{(-1)}^{n-1}}}{n}{{\log }_{e}}a\]
3415.

\[(0.5)-\frac{{{(0.5)}^{2}}}{2}+\frac{{{(0.5)}^{3}}}{3}-\frac{{{(0.5)}^{4}}}{4}+....\] [MP PET 1995]

A. \[{{\log }_{e}}\frac{3}{2}\]
B. \[{{\log }_{10}}\frac{1}{2}\]
C. \[{{\log }_{e}}n\,!\]
D. \[{{\log }_{e}}\frac{1}{2}\]
Answer» B. \[{{\log }_{10}}\frac{1}{2}\]
3416.

\[\frac{x-1}{(x+1)}+\frac{1}{2}\,.\,\frac{{{x}^{2}}-1}{{{(x+1)}^{2}}}+\frac{1}{3}\,.\,\frac{{{x}^{3}}-1}{{{(x+1)}^{3}}}+......\infty =\]

A. \[{{\log }_{e}}x\]
B. \[{{\log }_{e}}(1+x)\]
C. \[{{\log }_{e}}(1-x)\]
D. \[{{\log }_{e}}\frac{x}{1+x}\]
Answer» B. \[{{\log }_{e}}(1+x)\]
3417.

The sum of the series \[{{\log }_{4}}2-{{\log }_{8}}2+{{\log }_{16}}2....\] is    [MNR 1994; Roorkee 1994; MP PET 2000]

A. \[{{e}^{2}}\]
B. \[{{\log }_{e}}2\]
C. \[{{\log }_{e}}3-2\]
D. \[1-{{\log }_{e}}2\]
Answer» E.
3418.

\[{{\log }_{e}}2+{{\log }_{e}}\left( 1+\frac{1}{2} \right)+{{\log }_{e}}\left( 1+\frac{1}{3} \right)+....+{{\log }_{e}}\left( 1+\frac{1}{n-1} \right)\] is equal to

A. \[{{\log }_{e}}1\]
B. \[{{\log }_{e}}n\]
C. \[{{\log }_{e}}(1+n)\]
D. \[{{\log }_{e}}(1-n)\]
Answer» C. \[{{\log }_{e}}(1+n)\]
3419.

The sum to infinity of the given series \[\frac{1}{n}-\frac{1}{2{{n}^{2}}}+\frac{1}{3{{n}^{3}}}-\frac{1}{4{{n}^{4}}}+....\]  is [MP PET 1994]

A. \[{{\log }_{e}}\left( \frac{n+1}{n} \right)\]
B. \[{{\log }_{e}}\left( \frac{n}{n+1} \right)\]
C. \[{{\log }_{e}}\left( \frac{n-1}{n} \right)\]
D. \[{{\log }_{e}}\left( \frac{n}{n-1} \right)\]
Answer» B. \[{{\log }_{e}}\left( \frac{n}{n+1} \right)\]
3420.

\[{{\log }_{a}}x\] is defined for \[(a>0)\] [Roorkee 1990]

A. All real x
B. All negative real \[x\ne 1\]
C. All positive real \[x\ne 0\]
D. \[a\ge e\]
Answer» D. \[a\ge e\]
3421.

If   \[4\,\left[ {{x}^{2}}+\frac{{{x}^{6}}}{3}+\frac{{{x}^{10}}}{5}+..... \right]={{y}^{2}}+\frac{{{y}^{4}}}{2}+\frac{{{y}^{6}}}{3}+......,\]then

A. \[{{x}^{2}}y=2x-y\]
B. \[{{x}^{2}}y=2x+y\]
C. \[x=2{{y}^{2}}-1\]
D. \[{{x}^{2}}y=2x+{{y}^{2}}\]
Answer» B. \[{{x}^{2}}y=2x+y\]
3422.

The sum of \[\frac{1}{2}+\frac{1}{3}.\frac{1}{{{2}^{3}}}+\frac{1}{5}.\frac{1}{{{2}^{5}}}+.....\infty \] is [MP PET 1991]

A. \[{{\log }_{e}}\sqrt{\frac{3}{2}}\]
B. \[{{\log }_{e}}\sqrt{3}\]
C. \[{{\log }_{e}}\sqrt{\frac{1}{2}}\]
D. \[{{\log }_{e}}3\]
Answer» C. \[{{\log }_{e}}\sqrt{\frac{1}{2}}\]
3423.

\[\frac{1}{{{n}^{2}}}+\frac{1}{2{{n}^{4}}}+\frac{1}{3{{n}^{6}}}+......\infty =\]

A. \[{{\log }_{e}}\left( \frac{{{n}^{2}}}{{{n}^{2}}+1} \right)\]
B. \[{{\log }_{e}}\left( \frac{{{n}^{2}}+1}{{{n}^{2}}} \right)\]
C. \[{{\log }_{e}}\left( \frac{{{n}^{2}}}{{{n}^{2}}-1} \right)\]
D.   None of these
Answer» D.   None of these
3424.

\[\frac{m-n}{m+n}+\frac{1}{3}{{\left( \frac{m-n}{m+n} \right)}^{3}}+\frac{1}{5}{{\left( \frac{m-n}{m+n} \right)}^{5}}+......\infty =\]

A. \[{{\log }_{e}}\left( \frac{m}{n} \right)\]
B. \[{{\log }_{e}}\left( \frac{n}{m} \right)\]
C.  \[{{\log }_{e}}\left( \frac{m-n}{m+n} \right)\]
D. \[\frac{1}{2}{{\log }_{e}}\left( \frac{m}{n} \right)\]
Answer» E.
3425.

\[{{\log }_{e}}\frac{4}{5}+\frac{1}{4}-\frac{1}{2}{{\left( \frac{1}{4} \right)}^{2}}+\frac{1}{3}\,{{\left( \frac{1}{4} \right)}^{3}}+.....\]

A. \[2{{\log }_{e}}\frac{4}{5}\]
B. \[{{\log }_{e}}\frac{5}{4}\]
C. 1
D. 0
Answer» E.
3426.

\[{{\log }_{e}}x-{{\log }_{e}}(x-1)=\]

A. \[\frac{1}{x}-\frac{1}{2{{x}^{2}}}+\frac{1}{3{{x}^{3}}}-.....\infty \]
B. \[\frac{1}{x}+\frac{1}{2{{x}^{2}}}+\frac{1}{3{{x}^{3}}}+.....\infty \]
C. \[2\,\left( \frac{1}{x}+\frac{1}{3{{x}^{3}}}+\frac{1}{5{{x}^{5}}}+...\infty  \right)\]
D.  \[2\,\left( \frac{1}{x}-\frac{1}{3{{x}^{3}}}+\frac{1}{5{{x}^{5}}}-...\infty  \right)\]
Answer» C. \[2\,\left( \frac{1}{x}+\frac{1}{3{{x}^{3}}}+\frac{1}{5{{x}^{5}}}+...\infty  \right)\]
3427.

\[\frac{1}{1\,.\,3}+\frac{1}{2}\,.\,\frac{1}{3\,.\,5}+\frac{1}{3}\,.\,\frac{1}{5\,.\,7}+......\infty =\]

A. \[2\,{{\log }_{e}}2-1\]
B. \[{{\log }_{e}}2-1\]
C. \[{{\log }_{e}}2\]
D. None of these
Answer» B. \[{{\log }_{e}}2-1\]
3428.

\[\frac{1}{1\,.\,2}-\frac{1}{2\,.\,3}+\frac{1}{3\,.\,4}-\frac{1}{4\,.\,5}+.....\infty =\] [Roorkee 1992; AIEEE 2003]

A. \[{{\log }_{e}}\frac{4}{e}\]
B. \[{{\log }_{e}}\frac{e}{4}\]
C. \[{{\log }_{e}}4\]
D. \[{{\log }_{e}}2\]
Answer» B. \[{{\log }_{e}}\frac{e}{4}\]
3429.

\[1+\left( \frac{1}{2}+\frac{1}{3} \right)\,\frac{1}{4}+\left( \frac{1}{4}+\frac{1}{5} \right)\,\frac{1}{{{4}^{2}}}+\left( \frac{1}{6}+\frac{1}{7} \right)\,\frac{1}{{{4}^{3}}}+....\infty =\]

A. \[{{\log }_{e}}(2\sqrt{3})\]
B. \[2\,\,{{\log }_{e}}2\]
C. \[{{\log }_{e}}2\]
D. \[{{\log }_{e}}\left( \frac{2}{\sqrt{3}} \right)\]
Answer» B. \[2\,\,{{\log }_{e}}2\]
3430.

If \[b=a-\frac{{{a}^{2}}}{2}+\frac{{{a}^{3}}}{3}-\frac{{{a}^{4}}}{4}+..\]then \[b+\frac{{{b}^{2}}}{2\,!}+\frac{{{b}^{3}}}{3\,!}+\frac{{{b}^{4}}}{4\,!}+...\infty =\]

A. \[{{\log }_{e}}a\]
B. \[{{\log }_{e}}b\]
C. \[a\]
D. \[{{e}^{a}}\]
Answer» D. \[{{e}^{a}}\]
3431.

The sum of the series\[\frac{1}{2\,.\,3}+\frac{1}{4\,.\,5}+\frac{1}{6\,.\,7}+...=\] [MP PET 1998]

A. \[\log \,(2/e)\]
B. \[\log \,(e/2)\]
C. 2/e
D. e/2
Answer» C. 2/e
3432.

In  the expansion of  \[2{{\log }_{e}}x-{{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)\], the coefficient of \[{{x}^{-4}}\] is

A. 44228
B. \[-1\]
C. 1
D. None of these
Answer» B. \[-1\]
3433.

\[{{\log }_{e}}\,[{{(1+x)}^{1+x}}{{(1-x)}^{1-x}}]\,=\]

A. \[\frac{{{x}^{2}}}{2}+\frac{{{x}^{4}}}{4}+\frac{{{x}^{6}}}{6}+....\infty \]
B. \[\frac{{{x}^{2}}}{1.2}+\frac{{{x}^{4}}}{3.4}+\frac{{{x}^{6}}}{5.6}+....\infty \]
C. \[2\,\,\left[ \frac{{{x}^{2}}}{1.2}+\frac{{{x}^{4}}}{3.4}+\frac{{{x}^{6}}}{5.6}+..\infty  \right]\]
D. None of these
Answer» D. None of these
3434.

\[\frac{1}{5}+\frac{1}{2}\,.\,\frac{1}{{{5}^{2}}}+\frac{1}{3}.\frac{1}{{{5}^{3}}}+.....\infty =\]

A. \[{{\log }_{e}}\frac{4}{5}\]
B. \[{{\log }_{e}}\frac{\sqrt{5}}{2}\]
C. \[2{{\log }_{e}}\frac{\sqrt{5}}{2}\]
D. None of these
Answer» D. None of these
3435.

\[\frac{(a-1)-\frac{{{(a-1)}^{2}}}{2}+\frac{{{(a-1)}^{3}}}{3}-....\infty }{(b-1)-\frac{{{(b-1)}^{2}}}{2}+\frac{{{(b-1)}^{3}}}{3}-.....\infty }=\]

A. \[{{\log }_{b}}a\]
B. \[{{\log }_{a}}b\]
C. \[{{\log }_{e}}a-{{\log }_{e}}b\]
D. \[{{\log }_{e}}a+{{\log }_{e}}b\]
Answer» B. \[{{\log }_{a}}b\]
3436.

\[\frac{2}{1}\,.\,\frac{1}{3}+\frac{3}{2}.\frac{1}{9}+\frac{4}{3}.\frac{1}{27}+\frac{5}{4}.\frac{1}{81}+......\infty =\]

A. \[\frac{1}{2}-{{\log }_{e}}\frac{2}{3}\]
B. \[-{{\log }_{e}}\frac{2}{3}\]
C. \[\frac{1}{2}+{{\log }_{e}}\left( \frac{2}{3} \right)\]
D. None of these
Answer» B. \[-{{\log }_{e}}\frac{2}{3}\]
3437.

The feasible solution of a L.P.P. belongs to 

A.                 First and second quadrant          
B.                 First and third quadrant
C.                 Second quadrant            
D.                 Only first quadrant
Answer» E.
3438.

The graph of \[x\le 2\] and \[y\ge 2\] will be situated in the 

A.                 First and second quadrant          
B.                 Second and third quadrant
C.                 First and third quadrant
D.                 Third and fourth quadrant
Answer» B.                 Second and third quadrant
3439.

The maximum value of \[\mu =3x+4y\], subject to the conditions \[x+y\le 40,x+2y\le 60,x,y\ge 0\] is                                 [MP PET 2004]

A.                 130        
B.                 120
C.                 40          
D.                 140
Answer» E.
3440.

The co-ordinates of the point for minimum value of \[z=7x-8y\]subject to the conditions\[x+y-20\le 0\], \[y\ge 5,\,\] \[x\ge 0\], \[y\ge 0\] is [DCE 2005]

A.                 (20, 0)  
B.                 (15, 5)
C.                 (0, 5)     
D.                 (0, 20)
Answer» E.
3441.

The minimum value of\[z=2{{x}_{1}}+3{{x}_{2}}\] subject to the constraints\[2{{x}_{1}}+7{{x}_{2}}\ge 22\],\[{{x}_{1}}+{{x}_{2}}\ge 6\],\[5{{x}_{1}}+{{x}_{2}}\ge 10\] and \[{{x}_{1}},\ {{x}_{2}}\ge 0\] is              [MP PET 2003]

A.                 14          
B.                 20
C.                 10          
D.                 16
Answer» B.                 20
3442.

The maximum value of \[z=3x+4y\] subject to the constraints \[x+y\le 40,\ x+2y\le 60,\ x\ge 0\] and \[y\ge 0\] is                   [MP PET 2002, 04]

A.                 120        
B.                 140
C.                 100        
D.                 160
Answer» C.                 100        
3443.

The maximum value of \[z=5x+2y\], subject to the constraints \[x+y\le 7,\ x+2y\le 10\], \[x,\ y\ge 0\] is                  [AMU 1999]

A.                 10          
B.                 26
C.                 35          
D.                 70
Answer» D.                 70
3444.

If \[3{{x}_{1}}+5{{x}_{2}}\le 15\], \[5{{x}_{1}}+2{{x}_{2}}\le 10\], \[{{x}_{1}},\ {{x}_{2}}\ \ \ge 0\]                 then the maximum value of \[5{{x}_{1}}+3{{x}_{2}}\], by graphical method is

A.                 \[12\frac{7}{19}\]            
B.                 \[12\frac{1}{7}\]
C.                 \[12\frac{3}{5}\]              
D.                 12
Answer» B.                 \[12\frac{1}{7}\]
3445.

The solution of set of constraints \[x+2y\ge 11,\] \[3x+4y\le 30,\ \ 2x+5y\le 30,\ x\ge 0,\ \ y\ge 0\] includes the point  [MP PET 1993]

A.                 (2, 3)     
B.                 (3, 2)
C.                 (3, 4)     
D.                 (4, 3)
Answer» D.                 (4, 3)
3446.

The maximum value of \[10x+5y\] under the constraints \[3x+y\le 15,\ x+2y\le 8,\] \[x,\ y\ge 0\] is 

A.                 20          
B.                 50
C.                 53          
D.                 70
Answer» D.                 70
3447.

The maximum value of \[(x+2y)\] under the constraints \[2x+3y\le 6,\ x+4y\le 4,\ \ x,\ y\ge 0\] is

A.                 3             
B.                 3.2
C.                 2             
D.                 4
Answer» C.                 2             
3448.

The point at which the maximum value of \[(x+y)\] subject to the constraints \[2x+5y\le 100\], \[\frac{x}{25}+\frac{y}{49}\le 1\], \[x,\ y\ge 0\] is obtained, is 

A.                 (10, 20)
B.                 (20, 10)
C.                 (15, 15)
D.                 \[\left( \frac{50}{3},\ \frac{40}{3} \right)\]
Answer» E.
3449.

By graphical method, the solution of linear programming problem Maximize \[z=3{{x}_{1}}+5{{x}_{2}}\] Subject to \[3{{x}_{1}}+2{{x}_{2}}\le 18\], \[{{x}_{1}}\le 4\], \[{{x}_{2}}\le 6\],\[{{x}_{1}}\ge 0\],\[{{x}_{2}}\ge 0\] is             [MP PET 1996]

A.                 \[{{x}_{1}}=2,\ {{x}_{2}}=0,\ z=6\]           
B.                 \[{{x}_{1}}=2,\ {{x}_{2}}=6,\ z=36\]
C.                 \[{{x}_{1}}=4,\ {{x}_{2}}=3,\ z=27\]         
D.                 \[{{x}_{1}}=4,\ {{x}_{2}}=6,\ z=42\]
Answer» C.                 \[{{x}_{1}}=4,\ {{x}_{2}}=3,\ z=27\]         
3450.

\[z=ax+by,\ a,\ b\] being positive, under constraints \[y\ge 1\], \[x-4y+8\ge 0\], \[x,\ y\ge 0\] has  

A.                 Finite maximum              
B.                 Finite minimum
C.                 An unbounded minimum solution
D.                 An unbounded maximum solution
Answer» C.                 An unbounded minimum solution