MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 3551. |
The equation to the straight line passing through the points (4, ?5, ?2) and (?1, 5, 3) is [MP PET 2003] |
| A. | \[\frac{x-4}{1}=\frac{y+5}{-2}=\frac{z+2}{-1}\] |
| B. | \[\frac{x+1}{1}=\frac{y-5}{2}=\frac{z-3}{-1}\] |
| C. | \[\frac{x}{-1}=\frac{y}{5}=\frac{z}{3}\] |
| D. | \[\frac{x}{4}=\frac{y}{-5}=\frac{z}{-2}\] |
| Answer» B. \[\frac{x+1}{1}=\frac{y-5}{2}=\frac{z-3}{-1}\] | |
| 3552. |
If direction cosines of two lines are proportional to (2, 3, ?6) and (3, ?4, 5), then the acute angle between them is [MP PET 2003] |
| A. | \[{{\cos }^{-1}}\left( \frac{49}{36} \right)\] |
| B. | \[{{\cos }^{-1}}\left( \frac{18\sqrt{2}}{35} \right)\] |
| C. | \[96{}^\circ \] |
| D. | \[{{\cos }^{-1}}\left( \frac{18}{35} \right)\] |
| Answer» C. \[96{}^\circ \] | |
| 3553. |
The line \[\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}\] and \[\frac{x-1}{k}=\] \[\frac{y-4}{2}=\frac{z-5}{1}\] are coplanar, if [AIEEE 2003] |
| A. | \[k=0\]or ?1 |
| B. | \[k=0\]or 1 |
| C. | \[k=0\]or ?3 |
| D. | \[k=3\]or ?3 |
| Answer» D. \[k=3\]or ?3 | |
| 3554. |
The angle between a line with direction ratios 2 : 2 : 1 and a line joining (3, 1, 4) to (7, 2, 12) is [DCE 2002] |
| A. | \[{{\cos }^{-1}}(2/3)\] |
| B. | \[{{\cos }^{-1}}(-2/3)\] |
| C. | \[{{\tan }^{-1}}(2/3)\] |
| D. | None of these |
| Answer» B. \[{{\cos }^{-1}}(-2/3)\] | |
| 3555. |
The straight line \[\frac{x-3}{3}=\frac{y-2}{1}=\frac{z-1}{0}\]is [RPET 2002] |
| A. | Parallel to x-axis |
| B. | Parallel to y-axis |
| C. | Parallel to z-axis |
| D. | Perpendicular to z-axis |
| Answer» E. | |
| 3556. |
Equation of x-axis is [MP PET 2002] |
| A. | \[\frac{x}{1}=\frac{y}{1}=\frac{z}{1}\] |
| B. | \[\frac{x}{0}=\frac{y}{1}=\frac{z}{1}\] |
| C. | \[\frac{x}{1}=\frac{y}{0}=\frac{z}{0}\] |
| D. | \[\frac{x}{0}=\frac{y}{0}=\frac{z}{1}\] |
| Answer» D. \[\frac{x}{0}=\frac{y}{0}=\frac{z}{1}\] | |
| 3557. |
The angle between the lines \[\frac{x}{1}=\frac{y}{0}=\frac{z}{-1}\] and \[\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\] is [Pb. CET 2002] |
| A. | \[{{\cos }^{-1}}\frac{1}{5}\] |
| B. | \[{{\cos }^{-1}}\frac{1}{3}\] |
| C. | \[{{\cos }^{-1}}\frac{1}{2}\] |
| D. | \[{{\cos }^{-1}}\frac{1}{4}\] |
| Answer» B. \[{{\cos }^{-1}}\frac{1}{3}\] | |
| 3558. |
If the direction ratios of two lines are given by \[3lm-4\,ln+mn=0\] and \[l+2m+3n=0\], then the angle between the lines is [EAMCET 2003] |
| A. | \[\pi /2\] |
| B. | \[\pi /3\] |
| C. | \[\pi /4\] |
| D. | \[\pi /6\] |
| Answer» B. \[\pi /3\] | |
| 3559. |
The shortest distance between the lines \[\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}\] and \[\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}\] is [RPET 2001; MP PET 2002] |
| A. | \[\sqrt{30}\] |
| B. | \[2\sqrt{30}\] |
| C. | \[5\sqrt{30}\] |
| D. | \[3\sqrt{30}\] |
| Answer» E. | |
| 3560. |
If direction ratios of two lines are \[5,\,\,-12,\,13\] and \[-3,\,4,\,5\] then the angle between them is [RPET 2001] |
| A. | \[{{\cos }^{-1}}(1/65)\] |
| B. | \[{{\cos }^{-1}}(2/65)\] |
| C. | \[{{\cos }^{-1}}(3/65)\] |
| D. | \[\pi /2\] |
| Answer» B. \[{{\cos }^{-1}}(2/65)\] | |
| 3561. |
The angle between the straight lines \[\frac{x+1}{2}=\frac{y-2}{5}=\frac{z+3}{4}\] and \[\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-3}{-3}\] is [MP PET 2000] |
| A. | \[45{}^\circ \] |
| B. | \[30{}^\circ \] |
| C. | \[60{}^\circ \] |
| D. | \[90{}^\circ \] |
| Answer» E. | |
| 3562. |
The acute angle between the line joining the points (2,1,?3), (?3,1,7) and a line parallel to \[\frac{x-1}{3}=\] \[\frac{y}{4}=\frac{z+3}{5}\] through the point (?1, 0, 4) is [MP PET 1998] |
| A. | \[{{\cos }^{-1}}\left( \frac{7}{5\sqrt{10}} \right)\] |
| B. | \[{{\cos }^{-1}}\left( \frac{1}{\sqrt{10}} \right)\] |
| C. | \[{{\cos }^{-1}}\left( \frac{3}{5\sqrt{10}} \right)\] |
| D. | \[{{\cos }^{-1}}\left( \frac{1}{5\sqrt{10}} \right)\] |
| Answer» B. \[{{\cos }^{-1}}\left( \frac{1}{\sqrt{10}} \right)\] | |
| 3563. |
The angle between the pair of lines with direction ratios (1, 1, 2) and \[(\sqrt{3}-1,-\sqrt{3}-1,4)\] is [MP PET 1997, 2000] |
| A. | \[30{}^\circ \] |
| B. | \[45{}^\circ \] |
| C. | \[60{}^\circ \] |
| D. | \[90{}^\circ \] |
| Answer» D. \[90{}^\circ \] | |
| 3564. |
The equation of the line passing through the points ( 3, 2, 4) and (4, 5, 2) is |
| A. | \[\frac{x+3}{1}=\frac{y+2}{3}=\frac{z+4}{-2}\] |
| B. | \[\frac{x-3}{1}=\frac{y-2}{3}=\frac{z-4}{-2}\] |
| C. | \[\frac{x+3}{7}=\frac{y+2}{7}=\frac{z+4}{6}\] |
| D. | \[\frac{x-3}{7}=\frac{y-2}{7}=\frac{z-4}{6}\] |
| Answer» C. \[\frac{x+3}{7}=\frac{y+2}{7}=\frac{z+4}{6}\] | |
| 3565. |
The angle between the lines \[\frac{x+4}{1}=\frac{y-3}{2}=\frac{z+2}{3}\] and \[\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}\] is |
| A. | \[{{\sin }^{-1}}\left( \frac{1}{7} \right)\] |
| B. | \[{{\cos }^{-1}}\left( \frac{2}{7} \right)\] |
| C. | \[{{\cos }^{-1}}\left( \frac{1}{7} \right)\] |
| D. | None of these |
| Answer» D. None of these | |
| 3566. |
The straight lines \[\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}\] and \[\frac{x-1}{2}=\frac{y-2}{2}=\frac{z-3}{-2}\] are |
| A. | Parallel lines |
| B. | Intersecting at \[60{}^\circ \] |
| C. | Skew lines |
| D. | Intersecting at right angle |
| Answer» E. | |
| 3567. |
The angle between two lines \[\frac{x+1}{2}=\]\[\frac{y+3}{2}=\frac{z-4}{-1}\] and \[\frac{x-4}{1}=\frac{y+4}{2}=\frac{z+1}{2}\] is [MP PET 1996] |
| A. | \[{{\cos }^{-1}}\left( \frac{1}{9} \right)\] |
| B. | \[{{\cos }^{-1}}\left( \frac{2}{9} \right)\] |
| C. | \[{{\cos }^{-1}}\left( \frac{3}{9} \right)\] |
| D. | \[{{\cos }^{-1}}\left( \frac{4}{9} \right)\] |
| Answer» E. | |
| 3568. |
If the co-ordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (?4, 3, ?6) and (2, 9, 2) respectively, then the angle between the lines AB and CD is |
| A. | \[\frac{\pi }{6}\] |
| B. | \[\frac{\pi }{4}\] |
| C. | \[\frac{\pi }{3}\] |
| D. | None of these |
| Answer» E. | |
| 3569. |
The perpendicular distance of the point (2, 4, ?1) from the line \[\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}\] is [Kurukshetra CEE 1996] |
| A. | 3 |
| B. | 5 |
| C. | 7 |
| D. | 9 |
| Answer» D. 9 | |
| 3570. |
The angle between the lines whose direction cosines are connected by the relations \[l+m+n=0\] and \[2lm+2nl-mn=0\], is |
| A. | \[\frac{\pi }{3}\] |
| B. | \[\frac{2\pi }{3}\] |
| C. | \[\pi \] |
| D. | None of these |
| Answer» C. \[\pi \] | |
| 3571. |
The length of the perpendicular from point (1, 2, 3) to the line \[\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}\]is [MP PET 1997] |
| A. | 5 |
| B. | 6 |
| C. | 7 |
| D. | 8 |
| Answer» D. 8 | |
| 3572. |
The length of the perpendicular drawn from the point (5, 4, ?1) on the line \[\frac{x-1}{2}=\frac{y}{9}=\frac{z}{5}\] is |
| A. | \[\sqrt{\frac{110}{2109}}\] |
| B. | \[\sqrt{\frac{2109}{110}}\] |
| C. | \[\frac{2109}{110}\] |
| D. | 54 |
| Answer» C. \[\frac{2109}{110}\] | |
| 3573. |
The equation of straight line passing through the point (a, b, c) and parallel to z- axis, is [MP PET 1995; Pb. CET 2000] |
| A. | \[\frac{x-a}{1}=\frac{y-b}{1}=\frac{z-c}{0}\] |
| B. | \[\frac{x-a}{0}=\frac{y-b}{1}=\frac{z-c}{1}\] |
| C. | \[\frac{x-a}{1}=\frac{y-b}{0}=\frac{z-c}{0}\] |
| D. | \[\frac{x-a}{0}=\frac{y-b}{0}=\frac{z-c}{1}\] |
| Answer» E. | |
| 3574. |
The equation of straight line passing through the points (a, b, c) and (a ? b, b? c, c ? a), is [MP PET 1994] |
| A. | \[\frac{x-a}{a-b}=\frac{y-b}{b-c}=\frac{z-c}{c-a}\] |
| B. | \[\frac{x-a}{b}=\frac{y-b}{c}=\frac{z-c}{a}\] |
| C. | \[\frac{x-a}{a}=\frac{y-b}{b}=\frac{z-c}{c}\] |
| D. | \[\frac{x-a}{2a-b}=\frac{y-b}{2b-c}=\frac{z-c}{2c-a}\] |
| Answer» C. \[\frac{x-a}{a}=\frac{y-b}{b}=\frac{z-c}{c}\] | |
| 3575. |
The angle between the lines whose direction cosines satisfy the equations \[l+m+n=0\], \[{{l}^{2}}+{{m}^{2}}-{{n}^{2}}=0\] is given by [MP PET 1993; RPET 2001] |
| A. | \[\frac{2\pi }{3}\] |
| B. | \[\frac{\pi }{6}\] |
| C. | \[\frac{5\pi }{6}\] |
| D. | \[\frac{\pi }{3}\] |
| Answer» E. | |
| 3576. |
The symmetric equation of lines \[3x+2y+z-5=0\] and \[x+y-2z-3=0\], is |
| A. | \[\frac{x-1}{5}=\frac{y-4}{7}=\frac{z-0}{1}\] |
| B. | \[\frac{x+1}{5}=\frac{y+4}{7}=\frac{z-0}{1}\] |
| C. | \[\frac{x+1}{-5}=\frac{y-4}{7}=\frac{z-0}{1}\] |
| D. | \[\frac{x-1}{-5}=\frac{y-4}{7}=\frac{z-0}{1}\] |
| Answer» D. \[\frac{x-1}{-5}=\frac{y-4}{7}=\frac{z-0}{1}\] | |
| 3577. |
The co-ordinates of the foot of perpendicular drawn from the origin to the line joining the points (?9, 4, 5) and (10, 0, ?1) will be |
| A. | (? 3, 2, 1) |
| B. | (1, 2, 2) |
| C. | (4, 5, 3) |
| D. | None of these |
| Answer» E. | |
| 3578. |
Distance of the point \[({{x}_{1}},{{y}_{1}},{{z}_{1}})\] from the line\[\frac{x-{{x}_{2}}}{l}=\frac{y-{{y}_{2}}}{m}=\frac{z-{{z}_{2}}}{n}\], where \[l,\]m and n are the direction cosines of line is |
| A. | \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}-{{[l({{x}_{1}}-{{x}_{2}})+m({{y}_{1}}-{{y}_{2}})+n({{z}_{1}}-{{z}_{2}})]}^{2}}}\] |
| B. | \[\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}+{{({{z}_{2}}-{{z}_{1}})}^{2}}}\] |
| C. | \[\sqrt{({{x}_{2}}-{{x}_{1}})l+({{y}_{2}}-{{y}_{1}})m+({{z}_{2}}-{{z}_{1}})n}\] |
| D. | None of these |
| Answer» B. \[\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}+{{({{z}_{2}}-{{z}_{1}})}^{2}}}\] | |
| 3579. |
The equation of a line passing through the point (?3, 2, ? 4) and equally inclined to the axes, are |
| A. | \[x-3=y+2=z-4\] |
| B. | \[x+3=y-2=z+4\] |
| C. | \[\frac{x+3}{1}=\frac{y-2}{2}=\frac{z+4}{3}\] |
| D. | None of these |
| Answer» C. \[\frac{x+3}{1}=\frac{y-2}{2}=\frac{z+4}{3}\] | |
| 3580. |
The equation of the plane which bisects the line joining the points (?1, 2, 3) and (3, ?5, 6) at right angle, is |
| A. | \[4x-7y-3z=8\] |
| B. | \[4x+2y-3z=28\] |
| C. | \[4x-7y+3z=28\] |
| D. | \[4x-7y-3z=28\] |
| Answer» D. \[4x-7y-3z=28\] | |
| 3581. |
The equation of the plane passing through the lines \[\frac{x-4}{1}=\frac{y-3}{1}=\frac{z-2}{2}\]and \[\frac{x-3}{1}=\frac{y-2}{-4}=\frac{z}{5}\] is |
| A. | \[11x-y-3z=35\] |
| B. | \[11x+y-3z=35\] |
| C. | \[11x-y+3z=35\] |
| D. | None of these |
| Answer» E. | |
| 3582. |
The equation of the straight line passing through (1, 2, 3) and perpendicular to the plane \[x+2y-5z+9=0\] is [MP PET 1991] |
| A. | \[\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{-5}\] |
| B. | \[\frac{x-1}{1}=\frac{y-2}{2}=\frac{z+5}{3}\] |
| C. | \[\frac{x+1}{1}=\frac{y+2}{2}=\frac{z+3}{-5}\] |
| D. | \[\frac{x+1}{1}=\frac{y+2}{2}=\frac{z-5}{3}\] |
| Answer» B. \[\frac{x-1}{1}=\frac{y-2}{2}=\frac{z+5}{3}\] | |
| 3583. |
The equation of the plane passing through the origin and perpendicular to the line \[x=2y=3z\]is |
| A. | \[6x+3y+2z=0\] |
| B. | \[x+2y+3z=0\] |
| C. | \[3x+2y+z=0\] |
| D. | None of these |
| Answer» B. \[x+2y+3z=0\] | |
| 3584. |
If the equation of a line and a plane be \[\frac{x+3}{2}=\frac{y-4}{3}=\frac{z+5}{2}\]and\[4x-2y-z=1\]respectively, then |
| A. | Line is parallel to the plane |
| B. | Line is perpendicular to the plane |
| C. | Line lies in the plane |
| D. | None of these |
| Answer» B. Line is perpendicular to the plane | |
| 3585. |
The equation of the plane through the point \[(2,-1,-3)\]and parallel to the lines \[\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}\] and \[\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}\] is [Kerala (Engg.) 2005] |
| A. | \[8x+14y+13z+37=0\] |
| B. | \[8x-14y+13z+37=0\] |
| C. | \[8x+14y-13z+37=0\] |
| D. | \[8x+14y+13z-37=0\] |
| E. | (e) \[8x-14y-13z-37=0\] |
| Answer» B. \[8x-14y+13z+37=0\] | |
| 3586. |
The point of intersection of the line \[\frac{x-1}{3}=\frac{y+2}{4}=\frac{z-3}{-2}\] and plane \[2x-y+3z-1=0\] is [Orissa JEE 2005] |
| A. | \[(10,\,\,-10,\,3)\] |
| B. | \[(10,\,\,10,\,-3)\] |
| C. | \[(-10,\,\,10,\,3)\] |
| D. | None of these |
| Answer» C. \[(-10,\,\,10,\,3)\] | |
| 3587. |
The line joining the points (3, 5, ?7) and (?2, 1, 8) meets the yz-plane at point [RPET 2003] |
| A. | \[\left( 0,\,\frac{13}{5},\,2 \right)\] |
| B. | \[\left( 2,\,0,\,\frac{13}{5} \right)\] |
| C. | \[\left( 0,\,2,\,\frac{13}{5} \right)\] |
| D. | (2, 2, 0) |
| Answer» B. \[\left( 2,\,0,\,\frac{13}{5} \right)\] | |
| 3588. |
A plane which passes through the point (3, 2, 0) and the line \[\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}\]is [AIEEE 2002] |
| A. | \[x-y+z=1\] |
| B. | \[x+y+z=5\] |
| C. | \[x+2y-z=0\] |
| D. | \[2x-y+z=5\] |
| Answer» B. \[x+y+z=5\] | |
| 3589. |
The ratio in which the line joining the points (2, 4, 5) and (3, 5, ?4) is divided by the yz-plane is [MP PET 2002; RPET 2002] |
| A. | \[2:3\] |
| B. | \[3:2\] |
| C. | \[-2:3\] |
| D. | \[4:-3\] |
| Answer» D. \[4:-3\] | |
| 3590. |
The equation of the plane passing through the line \[\frac{x-1}{5}=\frac{y+2}{6}=\frac{z-3}{4}\]and the point (4, 3, 7) is [MP PET 2001] |
| A. | \[4x+8y+7z=41\] |
| B. | \[4x-8y+7z=41\] |
| C. | \[4x-8y-7z=41\] |
| D. | \[4x-8y+7z=39\] |
| Answer» C. \[4x-8y-7z=41\] | |
| 3591. |
Under what condition does a straight line \[\frac{x-{{x}_{0}}}{l}=\]\[\frac{y-{{y}_{0}}}{m}=\frac{z-{{z}_{0}}}{n}\] is parallel to the xy-plane [AMU 2000] |
| A. | \[l=0\] |
| B. | \[m=0\] |
| C. | \[n=0\] |
| D. | \[l=0,m=0\] |
| Answer» D. \[l=0,m=0\] | |
| 3592. |
The xy-plane divides the line joining the points (?1, 3, 4) and (2, ?5, 6) [RPET 2000] |
| A. | Internally in the ratio 2 : 3 |
| B. | Internally in the ratio 3 : 2 |
| C. | Externally in the ratio 2 : 3 |
| D. | Externally in the ratio 3 : 2 |
| Answer» D. Externally in the ratio 3 : 2 | |
| 3593. |
The equation of the plane containing the line \[\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}\] and the point (0, 7, ?7) is [Roorkee 1999] |
| A. | \[x+y+z=1\] |
| B. | \[x+y+z=2\] |
| C. | \[x+y+z=0\] |
| D. | None of these |
| Answer» D. None of these | |
| 3594. |
The angle between the line \[\frac{x-1}{2}=\] \[\frac{y-2}{1}=\frac{z+3}{-2}\] and the plane \[x+y+4=0\], is [MP PET 1999] |
| A. | \[0{}^\circ \] |
| B. | \[30{}^\circ \] |
| C. | \[45{}^\circ \] |
| D. | \[90{}^\circ \] |
| Answer» D. \[90{}^\circ \] | |
| 3595. |
The co-ordinates of the point where the line \[\frac{x-6}{-1}=\frac{y+1}{0}=\frac{z+3}{4}\] meets the plane \[x+y-z=3\]are [MP PET 1998; Pb. CET 2002] |
| A. | (2, 1, 0) |
| B. | (7, ?1, ?7) |
| C. | (1, 2, ?6) |
| D. | (5, ?1, 1) |
| Answer» E. | |
| 3596. |
The co-ordinates of the point where the line through \[P(3,\,4,\,1)\] and \[Q(5,1,6)\] crosses the xy-plane are [MP PET 1997] |
| A. | \[\frac{3}{5},\frac{13}{5},\frac{23}{5}\] |
| B. | \[\frac{13}{5},\frac{23}{5},\frac{3}{5}\] |
| C. | \[\frac{13}{5},\frac{23}{5},0\] |
| D. | \[\frac{13}{5},0,\,0\] |
| Answer» D. \[\frac{13}{5},0,\,0\] | |
| 3597. |
The line \[\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}\] is parallel to the plane |
| A. | \[2x+3y+4z=29\] |
| B. | \[3x+4y-5z=10\] |
| C. | \[3x+4y+5z=38\] |
| D. | \[x+y+z=0\] |
| Answer» C. \[3x+4y+5z=38\] | |
| 3598. |
The equation of the plane through the origin containing the line \[\frac{x-1}{5}=\frac{y-2}{4}=\frac{z-3}{5}\] is |
| A. | \[2x+5y-6z=0\] |
| B. | \[x+5y-5z=0\] |
| C. | \[x-5y+3z=0\] |
| D. | \[x+y-z=0\] |
| Answer» D. \[x+y-z=0\] | |
| 3599. |
The point of intersection of the line \[\frac{x}{1}=\frac{y-1}{2}=\frac{z+2}{3}\] and the plane \[2x+3y+z=0\]is [MP PET 1989] |
| A. | (0, 1, ?2) |
| B. | (1, 2, 3) |
| C. | (?1, 9, ?25) |
| D. | \[\left( \frac{-1}{11},\frac{9}{11}\frac{-25}{11} \right)\] |
| Answer» E. | |
| 3600. |
The equation of the plane which bisects the line joining (2, 3, 4) and (6, 7, 8) is [CET 1991, 93] |
| A. | \[x+y+z-15=0\] |
| B. | \[x-y+z-15=0\] |
| C. | \[x-y-z-15=0\] |
| D. | \[x+y+z+15=0\] |
| Answer» B. \[x-y+z-15=0\] | |