MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 1101. |
If \[\int{\sec x\cos ec\,\,x\,\,dx=\log \left| g(x) \right|}+c,\] then what is \[g(x)\] equal to? |
| A. | \[\sin x\cos x\] |
| B. | \[{{\sec }^{2}}x\] |
| C. | \[\tan x\] |
| D. | \[\log \left| \tan x \right|\] |
| Answer» D. \[\log \left| \tan x \right|\] | |
| 1102. |
The value of the integral \[\int_{-1}^{3}{(\left| x \right|+\left| x-1 \right|)dx}\] is |
| A. | 4 |
| B. | 9 |
| C. | 2 |
| D. | \[\frac{9}{2}\] |
| Answer» C. 2 | |
| 1103. |
\[\left[ \sum\limits_{n=1}^{10}{\int\limits_{-2n-1}^{-2n}{{{\sin }^{27}}xdx}} \right]+\left[ \sum\limits_{n=1}^{10}{\int\limits_{2n}^{2n+1}{{{\sin }^{27}}}xdx} \right]=\] |
| A. | \[{{27}^{2}}\] |
| B. | \[-54\] |
| C. | \[54\] |
| D. | 0 |
| Answer» E. | |
| 1104. |
\[\int{32{{x}^{3}}{{(\log \,\,x)}^{2}}dx}\] is equal to: |
| A. | \[8{{x}^{4}}{{(\log \,\,x)}^{2}}+C\] |
| B. | \[{{x}^{4}}\{8{{(\log \,\,x)}^{2}}-4(\log \,\,x)+1\}+C\] |
| C. | \[{{x}^{4}}\{8{{(\log \,\,x)}^{2}}-4(\log \,\,x)\}+C\] |
| D. | \[{{x}^{3}}\{{{(\log \,\,x)}^{2}}-2\log \,\,x\}+C\] |
| Answer» C. \[{{x}^{4}}\{8{{(\log \,\,x)}^{2}}-4(\log \,\,x)\}+C\] | |
| 1105. |
\[\int\limits_{0}^{\pi }{xf(\sin \,\,x)dx}\] is equal to |
| A. | \[\pi \int\limits_{0}^{\pi }{f(cos\,\,x)dx}\] |
| B. | \[\pi \int\limits_{0}^{\pi }{f(sin\,\,x)dx}\] |
| C. | \[\frac{\pi }{2}\int\limits_{0}^{\pi /2}{f(sin\,\,x)dx}\] |
| D. | \[\pi \int\limits_{0}^{\pi /2}{f(cos\,\,x)dx}\] |
| Answer» E. | |
| 1106. |
\[\int{\frac{dx}{\sin x(3+{{\cos }^{2}}x)}}\] is equal to |
| A. | \[\log \left| {{y}^{2}}-1 \right|-{{\tan }^{-1}}y+C\] |
| B. | \[{{\tan }^{-1}}\frac{y}{\sqrt{3}}+C\] |
| C. | \[\log \left| \frac{y-1}{y+1} \right|+C\] |
| D. | \[\frac{1}{4}\log \left| \frac{y-1}{y+1} \right|-\frac{1}{4\sqrt{3}}{{\tan }^{-1}}\frac{y}{\sqrt{3}}+C\] |
| Answer» E. | |
| 1107. |
If\[\int{{{\log }_{e}}\left( \sqrt{1-x}+\sqrt{1+x} \right)dx}\]\[=x{{\log }_{e}}\left( \sqrt{1-x}+\sqrt{1+x} \right)+g(x)+C\]. Then \[g(x)=\] |
| A. | \[x-{{\sin }^{-1}}x\] |
| B. | \[{{\sin }^{-1}}x-x\] |
| C. | \[x+{{\sin }^{-1}}x\] |
| D. | \[{{\sin }^{-1}}x-{{x}^{2}}\] |
| Answer» C. \[x+{{\sin }^{-1}}x\] | |
| 1108. |
\[\int{\frac{(1+x){{e}^{x}}}{\cot (x{{e}^{x}})}dx}\] is equal to |
| A. | \[\log \left| \cos (x{{e}^{x}}) \right|+C\] |
| B. | \[\log \left| \cot (x{{e}^{x}}) \right|+C\] |
| C. | \[\log \left| sec(x{{e}^{-x}}) \right|+C\] |
| D. | \[\log \left| sec(x{{e}^{x}}) \right|+C\] |
| Answer» E. | |
| 1109. |
The value of \[\int_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}\,\,dt}+\int_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}dt}\] is |
| A. | \[\pi \] |
| B. | \[\frac{\pi }{2}\] |
| C. | \[\frac{\pi }{4}\] |
| D. | 1 |
| Answer» D. 1 | |
| 1110. |
What is the value of\[\int\limits_{0}^{1}{(x-1){{e}^{-x}}dx}\]? |
| A. | 0 |
| B. | e |
| C. | \[\frac{1}{e}\] |
| D. | \[\frac{-1}{e}\] |
| Answer» E. | |
| 1111. |
If \[f(x)=\frac{{{e}^{x}}}{1+{{e}^{x}}},{{I}_{1}}=\int\limits_{f(-a)}^{f(a)}{xg\{x(1-x)\}dx}\] and \[{{I}_{2}}=\int\limits_{f(-a)}^{f(a)}{g\{x(1-x)\}dx,}\] then the value of \[\frac{{{I}_{2}}}{{{I}_{1}}}\] is |
| A. | 1 |
| B. | \[-3\] |
| C. | \[-1\] |
| D. | \[2\] |
| Answer» E. | |
| 1112. |
\[\int{\frac{({{x}^{2}}-1)}{x\sqrt{{{x}^{4}}+3{{x}^{2}}+1}}dx}\] is equal to |
| A. | \[\log \left| x+\frac{1}{x}+\sqrt{{{x}^{2}}+\frac{1}{{{x}^{2}}}+3} \right|+C\] |
| B. | \[\log \left| x-\frac{1}{x}+\sqrt{{{x}^{2}}+\frac{1}{{{x}^{2}}}-3} \right|+C\] |
| C. | \[\log \left| x+\sqrt{{{x}^{2}}+3} \right|+C\] |
| D. | None of these |
| Answer» B. \[\log \left| x-\frac{1}{x}+\sqrt{{{x}^{2}}+\frac{1}{{{x}^{2}}}-3} \right|+C\] | |
| 1113. |
\[\int{\frac{\sqrt{x}}{1+\sqrt[4]{{{x}^{3}}}}}dx\] is equal to |
| A. | \[\frac{4}{3}\left[ 1+{{x}^{3/4}}+\log (1+{{x}^{3/4}}) \right]+C\] |
| B. | \[\frac{4}{3}\left[ 1+{{x}^{3/4}}-\log (1+{{x}^{3/4}}) \right]+C\] |
| C. | \[\frac{4}{3}\left[ 1-{{x}^{3/4}}+\log (1+{{x}^{3/4}}) \right]+C\] |
| D. | None of these |
| Answer» C. \[\frac{4}{3}\left[ 1-{{x}^{3/4}}+\log (1+{{x}^{3/4}}) \right]+C\] | |
| 1114. |
The solution of \[\frac{dy}{dx}=\left| x \right|\] is: |
| A. | \[y=\frac{x\left| x \right|}{2}+c\] |
| B. | \[y=\frac{\left| x \right|}{2}+c\] |
| C. | \[y=\frac{{{x}^{2}}}{2}+c\] |
| D. | \[y=\frac{{{x}^{3}}}{2}+c\] Where c is an arbitrary constant |
| Answer» B. \[y=\frac{\left| x \right|}{2}+c\] | |
| 1115. |
Consider the following statements in respect of the differential equation\[\frac{{{d}^{2}}y}{d{{x}^{2}}}+\cos \left( \frac{dy}{dx} \right)=0\] 1. The degree of the differential equation is not defined. 2. The order of the differential equation is 2. Which of the above statements is/are correct? |
| A. | 1 only |
| B. | 2 only |
| C. | Both 1 and 2 |
| D. | Neither 1 nor 2 |
| Answer» D. Neither 1 nor 2 | |
| 1116. |
Under which one of the following conditions does the solution of \[\frac{dy}{dx}=\frac{ax+b}{cy+d}\] represent a parabola? |
| A. | \[a=0,\text{ }c=0\] |
| B. | \[a=1,\text{ }b=2,\text{ }c\ne 0\] |
| C. | \[a=0,c\ne 0,b\ne 0\] |
| D. | \[a=1,c=1\] |
| Answer» D. \[a=1,c=1\] | |
| 1117. |
If \[\phi (x)\] is a differentiable function, then the solution of the differential equation\[dy+\{y\phi '(x)-\phi (x)\phi '(x)\}dx=0\] is |
| A. | \[y=\{\phi (x)-1\}+c{{e}^{-\phi (x)}}\] |
| B. | \[y\phi (x)={{\{\phi (x)\}}^{2}}+c\] |
| C. | \[y{{e}^{\phi (x)}}=\phi (x){{e}^{\phi (x)}}+c\] |
| D. | None of these |
| Answer» B. \[y\phi (x)={{\{\phi (x)\}}^{2}}+c\] | |
| 1118. |
The equation of the curve satisfying \[xdy-ydx=\sqrt{{{x}^{2}}-{{y}^{2}}}\] and \[y(1)=0\] is: |
| A. | \[y={{x}^{2}}\log (\sin \,x)\] |
| B. | \[y=x\sin (log\,x)\] |
| C. | \[{{y}^{2}}=x{{(x-1)}^{2}}\] |
| D. | \[y=2{{x}^{2}}(x-1)\] |
| Answer» C. \[{{y}^{2}}=x{{(x-1)}^{2}}\] | |
| 1119. |
The differential equation of the curve \[\frac{x}{c-1}+\frac{y}{c+1}=1\] is given by |
| A. | \[\left( \frac{dy}{dx}-1 \right)\left( y+x\frac{dy}{dx} \right)=2\frac{dy}{dx}\] |
| B. | \[\left( \frac{dy}{dx}+1 \right)\left( y-x\frac{dy}{dx} \right)=\frac{dy}{dx}\] |
| C. | \[\left( \frac{dy}{dx}+1 \right)\left( y-x\frac{dy}{dx} \right)=2\frac{dy}{dx}\] |
| D. | None of these |
| Answer» D. None of these | |
| 1120. |
The population of a country doubles in 40 years. Assuming that the rate of increase is proportional to the number of inhabitants, the number of years in which it would treble itself is |
| A. | 80 years |
| B. | \[80\frac{\log 2}{\log 3}years\] |
| C. | \[40\frac{\log 3}{\log 2}years\] |
| D. | \[40\log 2\log 3\,years\] |
| Answer» D. \[40\log 2\log 3\,years\] | |
| 1121. |
The marginal cost of manufacturing a certain item is given by\[c'(x)=\frac{dc}{dx}=2+0.15x\]. The total cost function c (x), is |
| A. | \[0.075{{x}^{2}}+2x+100\] |
| B. | \[0.15{{x}^{2}}+3x+30\] |
| C. | \[{{x}^{2}}+100.075x+100\] |
| D. | None of these It is given that c (0) = 100 |
| Answer» B. \[0.15{{x}^{2}}+3x+30\] | |
| 1122. |
What is the degree of the differential equation\[{{\left( \frac{{{d}^{3}}y}{d{{x}^{3}}} \right)}^{2/3}}+4-3\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)+5\left( \frac{dy}{dx} \right)=0\]? |
| A. | 3 |
| B. | 2 |
| C. | 44257 |
| D. | Not defined |
| Answer» C. 44257 | |
| 1123. |
What is the degree of the differential equation\[k\frac{{{d}^{2}}y}{d{{x}^{2}}}={{\left[ 1+{{\left( \frac{dy}{dx} \right)}^{3}} \right]}^{3/2}}\], where k is a constant? |
| A. | 1 |
| B. | 2 |
| C. | 3 |
| D. | 4 |
| Answer» C. 3 | |
| 1124. |
Solution of the differential equation\[\frac{dx}{dy}-\frac{x\,\,\log \,\,x}{1+\log \,\,x}=\frac{{{e}^{y}}}{1+\log \,\,x'}\] if \[y(1)=0\], is |
| A. | \[{{x}^{x}}={{e}^{y{{e}^{y}}}}\] |
| B. | \[{{e}^{y}}={{x}^{{{e}^{y}}}}\] |
| C. | \[{{x}^{x}}=y{{e}^{^{y}}}\] |
| D. | None of these |
| Answer» B. \[{{e}^{y}}={{x}^{{{e}^{y}}}}\] | |
| 1125. |
The equation of the curve passing through the point \[\left( 0,\frac{\pi }{4} \right)\] whose differential equation is\[sin\text{ }x\text{ }cos\text{ }y\text{ }dx+cos\text{ }x\text{ }sin\text{ }y\text{ }dy=0\], is |
| A. | \[sec\,\,x\,\,sec\,\,y=\sqrt{2}\] |
| B. | \[cos\,\,x\,\,cos\,\,y=\sqrt{2}\] |
| C. | \[\sec \,\,x=\sqrt{2}\,\,\cos \,\,y\] |
| D. | \[cos\,\,y=\sqrt{2}\,\,\sec \,\,y\] |
| Answer» B. \[cos\,\,x\,\,cos\,\,y=\sqrt{2}\] | |
| 1126. |
The function \[f(\theta )=\frac{d}{d\theta }\int\limits_{0}^{\theta }{\frac{dx}{1-\cos \theta \,\,\cos x}}\] satisfies the differential equation |
| A. | \[\frac{df}{d\theta }+2f(\theta )cot\theta =0\] |
| B. | \[\frac{df}{d\theta }-2f(\theta )cot\theta =0\] |
| C. | \[\frac{df}{d\theta }+2f(\theta )=0\] |
| D. | \[\frac{df}{d\theta }-2f(\theta )=0\] |
| Answer» B. \[\frac{df}{d\theta }-2f(\theta )cot\theta =0\] | |
| 1127. |
The differential equation\[\frac{{{d}^{2}}y}{d{{x}^{2}}}+x\frac{dy}{dx}+\sin y+{{x}^{2}}=0\] is of the following type |
| A. | Linear |
| B. | Homogeneous |
| C. | Order two |
| D. | Degree two |
| Answer» D. Degree two | |
| 1128. |
The solution of the differential equation \[\frac{dy}{dx}+\frac{y}{x}\log \,\,y=\frac{y}{{{x}^{2}}}(\log \,\,{{y}^{2}})\] is |
| A. | \[y=\log ({{x}^{2}}+cx)\] |
| B. | \[\log \,\,y=x\left( c{{x}^{2}}+\frac{1}{2} \right)\] |
| C. | \[x=\log \,\,y\left( c{{x}^{2}}+\frac{1}{2} \right)\] |
| D. | None of these. |
| Answer» D. None of these. | |
| 1129. |
The degree of the differential equation\[\frac{dy}{dx}-x={{\left( y-x\frac{dy}{dx} \right)}^{-4}}\] is |
| A. | 2 |
| B. | 3 |
| C. | 4 |
| D. | 5 |
| Answer» E. | |
| 1130. |
The general solution the differential equation\[\frac{dy}{dx}-\frac{\tan \,\,y}{1+x}={{(1+x\,\,e)}^{x}}\sec \,\,y\] is |
| A. | \[\sin (1+x)=y({{e}^{x}}+c)\] |
| B. | \[y\sin (1+x)=c{{e}^{x}}\] |
| C. | \[(1+x)\sin \,\,y={{e}^{x}}+c\] |
| D. | \[\sin \,\,y=(1+x)({{e}^{x}}+c)\] |
| Answer» E. | |
| 1131. |
What is the degree of the differential equation\[y=x\frac{dy}{dx}+{{\left( \frac{dy}{dx} \right)}^{-1}}\]? |
| A. | 1 |
| B. | 2 |
| C. | -1 |
| D. | Degree does not exist. |
| Answer» C. -1 | |
| 1132. |
The degree and order respectively of the differential equation are \[\frac{dy}{dx}=\frac{1}{x+y+1}\]. |
| A. | 1, 1 |
| B. | 1, 2 |
| C. | 2, 1 |
| D. | 2, 2 |
| Answer» B. 1, 2 | |
| 1133. |
What is the differential equation for\[{{y}^{2}}=4a(x-a)\]? |
| A. | \[yy'-2xyy'+{{y}^{2}}=0\] |
| B. | \[yy'(yy'+2x)+{{y}^{2}}=0\] |
| C. | \[yy'(yy'-2x)+{{y}^{2}}=0\] |
| D. | \[yy'-2xyy'+y=0\] |
| Answer» D. \[yy'-2xyy'+y=0\] | |
| 1134. |
A curve is such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2). The equation of the curve is |
| A. | \[xy=1\] |
| B. | \[xy=2\] |
| C. | \[xy=3\] |
| D. | None of these |
| Answer» C. \[xy=3\] | |
| 1135. |
If for the differential equation \[y'=\frac{y}{x}+\phi \left( \frac{x}{y} \right),\] the general solution is \[y=\frac{x}{\log \left| Cx \right|},\] then \[\phi (x/y)\] is given by |
| A. | \[-{{x}^{2}}/{{y}^{2}}\] |
| B. | \[-{{y}^{2}}/{{x}^{2}}\] |
| C. | \[{{x}^{2}}/{{y}^{2}}\] |
| D. | \[-{{y}^{2}}/{{x}^{2}}\] |
| Answer» E. | |
| 1136. |
An integrating factor of the differential equation \[\sin x\frac{dy}{dx}+2y\cos x=1\] is |
| A. | \[{{\sin }^{2}}x\] |
| B. | \[\frac{2}{\sin x}\] |
| C. | \[\log \left| \sin \,\,x \right|\] |
| D. | \[\frac{1}{{{\sin }^{2}}x}\] |
| Answer» B. \[\frac{2}{\sin x}\] | |
| 1137. |
If \[y=y(x)\] and \[\frac{2+\sin x}{1+y}\left( \frac{dy}{dx} \right)=-\cos \,x,y(0)=1,\]then \[y\left( \frac{\pi }{2} \right)\] equals |
| A. | 44256 |
| B. | 44257 |
| C. | -0.333333333333333 |
| D. | 1 |
| Answer» B. 44257 | |
| 1138. |
\[y=2\,cos\text{ }x+3\,sin\text{ }x\] satisfies which of the following differential equations? 1. \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+y=0\] 2. \[{{\left( \frac{dy}{dx} \right)}^{2}}+\frac{dy}{dx}=0\] Select the correct answer using the code given below. |
| A. | 1 only |
| B. | 2 only |
| C. | Both 1 and 2 |
| D. | Neither 1 nor 2 |
| Answer» B. 2 only | |
| 1139. |
If \[x\,dy=y\,dx+{{y}^{2}}dy,y>0\] and\[y\text{(1})=1\], then what is \[y(-3)\] equal to? |
| A. | 3 only |
| B. | -1 only |
| C. | Both -1 and 3 |
| D. | Neither -1 nor 3 |
| Answer» B. -1 only | |
| 1140. |
If \[y={{e}^{4x}}+2{{e}^{-x}}\] satisfies the relation \[\frac{{{d}^{3}}y}{d{{x}^{3}}}+A\frac{dy}{dx}+By=0,\] then values of A and B respectively are: |
| A. | -13, 14 |
| B. | -13, -12 |
| C. | -13, 12 |
| D. | 12, -13 |
| Answer» C. -13, 12 | |
| 1141. |
The solution of the differential equation\[\frac{dy}{dx}+\frac{2yx}{1+{{x}^{2}}}=\frac{1}{{{(1+{{x}^{2}})}^{2}}}\] is: |
| A. | \[y(1+{{x}^{2}})=c+{{\tan }^{-1}}x\] |
| B. | \[\frac{y}{1+{{x}^{2}}}=c+{{\tan }^{-1}}x\] |
| C. | \[y\log (1+{{x}^{2}})=c+{{\tan }^{-1}}x\] |
| D. | \[y(1+{{x}^{2}})=c+{{\sin }^{-1}}x\] |
| Answer» B. \[\frac{y}{1+{{x}^{2}}}=c+{{\tan }^{-1}}x\] | |
| 1142. |
The solution to of the differential equation\[(x+1)\frac{dy}{dx}-y={{e}^{3x}}{{(x+1)}^{2}}\] is |
| A. | \[y=(x+1){{e}^{3x}}+c\] |
| B. | \[3y=(x+1)+{{e}^{3x}}+c\] |
| C. | \[\frac{3y}{x+1}={{e}^{3x}}+c\] |
| D. | \[y{{e}^{-3x}}=3(x+1)+c\] |
| Answer» D. \[y{{e}^{-3x}}=3(x+1)+c\] | |
| 1143. |
The solution of \[(y+x+5)dy=(y-x+1)dx\] is |
| A. | \[\log ({{(y+3)}^{2}}+{{(x+2)}^{2}})+{{\tan }^{-1}}\frac{y+3}{y+2}+C\] |
| B. | \[\log ({{(y+3)}^{2}}+{{(x+2)}^{2}})+{{\tan }^{-1}}\frac{y-3}{y-2}=C\] |
| C. | \[\log ({{(y+3)}^{2}}+{{(x+2)}^{2}})+2{{\tan }^{-1}}\frac{y+3}{y+2}=C\] |
| D. | \[\log ({{(y+3)}^{2}}+{{(x+2)}^{2}})-2{{\tan }^{-1}}\frac{y+3}{y+2}=C\] |
| Answer» D. \[\log ({{(y+3)}^{2}}+{{(x+2)}^{2}})-2{{\tan }^{-1}}\frac{y+3}{y+2}=C\] | |
| 1144. |
The general solution of the differential equation \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=\cos \,\,nx\] is |
| A. | \[{{n}^{2}}y+\cos \,\,nx={{n}^{2}}(Cx+D)\] |
| B. | \[{{n}^{2}}y-sin\,\,nx={{n}^{2}}(-Cx+D)\] |
| C. | \[{{n}^{2}}y+\cos \,\,nx=\frac{Cx+D}{{{n}^{2}}}\] |
| D. | None of these. [Where C and D are arbitrary constants] |
| Answer» B. \[{{n}^{2}}y-sin\,\,nx={{n}^{2}}(-Cx+D)\] | |
| 1145. |
If \[y={{(x+\sqrt{1+{{x}^{2}}})}^{n}},\] then \[(1+{{x}^{2}})\frac{{{d}^{2}}y}{d{{x}^{2}}}+x\frac{dy}{dx}\] is |
| A. | \[{{n}^{2}}y\] |
| B. | \[-{{n}^{2}}y\] |
| C. | \[-y\] |
| D. | \[2{{x}^{2}}y\] |
| Answer» B. \[-{{n}^{2}}y\] | |
| 1146. |
The solution of the differential equation\[\frac{dy}{dx}+\frac{y}{x}\log y=\frac{y}{{{x}^{2}}}{{(\log \,\,y)}^{2}}\] is |
| A. | \[y=\log ({{x}^{2}}+cx)\] |
| B. | \[\log \,\,y=x\left( c{{x}^{2}}+\frac{1}{2} \right)\] |
| C. | \[x=\log \,\,y\left( c{{x}^{2}}+\frac{1}{2} \right)\] |
| D. | None of these |
| Answer» D. None of these | |
| 1147. |
The solution of the equation \[\frac{dy}{dx}=\sqrt{\frac{1-{{y}^{2}}}{1-{{x}^{2}}}}\] is |
| A. | \[{{\sin }^{-1}}y-{{\sin }^{-1}}x=c\] |
| B. | \[{{\sin }^{-1}}y{{\sin }^{-1}}x=c\] |
| C. | \[{{\sin }^{-1}}(xy)=2\] |
| D. | None of these |
| Answer» B. \[{{\sin }^{-1}}y{{\sin }^{-1}}x=c\] | |
| 1148. |
If \[{{y}^{2}}=p(x)\] is a polynomial of degree 3, then what is \[2\frac{d}{dx}\left[ {{y}^{3}}\frac{{{d}^{2}}y}{d{{x}^{2}}} \right]\] equal to? |
| A. | p'(x)p"'(x) |
| B. | p"(x)p'"(x) |
| C. | p(x)p"'(x) |
| D. | A constant |
| Answer» D. A constant | |
| 1149. |
The order and degree of the differential equation of parabolas having vertex at the origin and focus at (a, 0) where a > 0, are respectively |
| A. | 1, 1 |
| B. | 2, 1 |
| C. | 1, 2 |
| D. | 2, 2 |
| Answer» B. 2, 1 | |
| 1150. |
What is the order of the differential equation\[\frac{dx}{dy}+\int{y\,dx={{x}^{3}}}\]? |
| A. | 1 |
| B. | 2 |
| C. | 3 |
| D. | Cannot be determined |
| Answer» C. 3 | |