MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 1201. |
If \[a\ne p,\] \[b\ne q,\] \[c\ne r\]and \[\left| \begin{matrix} p & b & c \\ a & q & c \\ a & b & r \\ \end{matrix} \right|=0\] then the value of \[\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}\] is equal to |
| A. | \[-1\] |
| B. | \[1\] |
| C. | \[-2\] |
| D. | \[2\] |
| Answer» E. | |
| 1202. |
What is the value of the determinant \[\left| \begin{matrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \\ \end{matrix} \right|?\] |
| A. | \[0\] |
| B. | \[abc\] |
| C. | \[ab+bc+ca\] |
| D. | \[abc\,(a+b+c)\] |
| Answer» B. \[abc\] | |
| 1203. |
If \[f(x)=\left| \begin{matrix} {{x}^{n-1}} & \cos x & \frac{1}{x+3} \\ 0 & \cos \frac{n\pi }{2} & \frac{{{(-1)}^{n}}n!}{{{3}^{n+1}}} \\ \alpha & {{\alpha }^{3}} & {{\alpha }^{5}} \\ \end{matrix} \right|\] then \[\frac{{{d}^{n}}}{d{{x}^{n}}}\,\,{{[f(x)]}_{x=0}}=\] |
| A. | \[1\] |
| B. | \[-1\] |
| C. | \[0\] |
| D. | None of these |
| Answer» D. None of these | |
| 1204. |
If adj \[B=A,\] \[\left| P \right|=\left| Q \right|=1,\] then adj \[({{Q}^{-1}}B{{P}^{-1}})\]is |
| A. | \[PQ\] |
| B. | \[QAP\] |
| C. | \[PAQ\] |
| D. | \[P{{A}^{-1}}Q\] |
| Answer» D. \[P{{A}^{-1}}Q\] | |
| 1205. |
If \[y=\left| \begin{matrix} \sin x & \cos x & \sin x \\ \cos x & -\operatorname{sinx} & \cos x \\ x & 1 & 1 \\ \end{matrix} \right|,\]then \[\frac{dy}{dx}\] is |
| A. | \[1\] |
| B. | \[2\] |
| C. | \[3\] |
| D. | 0 |
| Answer» B. \[2\] | |
| 1206. |
The value of determinant \[\left| \begin{matrix} {{\sin }^{2}}13{}^\circ & {{\sin }^{2}}77{}^\circ & \tan 135{}^\circ \\ {{\sin }^{2}}77{}^\circ & \tan 135{}^\circ & {{\sin }^{2}}13{}^\circ \\ \tan 135{}^\circ & {{\sin }^{2}}13{}^\circ & {{\sin }^{2}}77{}^\circ \\ \end{matrix} \right|\]is |
| A. | \[-1\] |
| B. | \[0\] |
| C. | \[1\] |
| D. | \[2\] |
| Answer» C. \[1\] | |
| 1207. |
Let \[\Delta =\] \[\left| \begin{matrix} \sin x & \sin (x+h) & \sin (x+2h) \\ \sin (x+2h) & \sin x & \sin (x+h) \\ \sin (x+h) & \sin (x+2h) & \sin x \\ \end{matrix} \right|\]Then, \[\underset{h\to 0}{\mathop{\lim }}\,\,\,\left( \frac{\Delta }{{{h}^{2}}} \right)\] is |
| A. | \[9si{{n}^{2}}x\cos x\] |
| B. | \[3{{\cos }^{2}}x\] |
| C. | \[\sin x{{\cos }^{2}}x\] |
| D. | None of these |
| Answer» C. \[\sin x{{\cos }^{2}}x\] | |
| 1208. |
If A is a square matrix such that \[{{A}^{2}}=I\] where I is the identity matrix, then what is \[{{A}^{-1}}\] equal to? |
| A. | \[A+1\] |
| B. | Null matrix |
| C. | A |
| D. | Transpose of A |
| Answer» D. Transpose of A | |
| 1209. |
If the value of the determinant \[\left| \begin{matrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \\ \end{matrix} \right|\] is positive, where \[a\ne b\ne c,\] then the value of abc |
| A. | Cannot be less than 1 |
| B. | Is greater than \[-8\] |
| C. | Is less than \[-8\] |
| D. | Must be greater than 8 |
| Answer» C. Is less than \[-8\] | |
| 1210. |
If A is a square matrix of order 3 with \[\left| A \right|\ne 0,\] then which one of the following is correct? |
| A. | \[\left| adj\,A \right|=\left| A \right|\] |
| B. | \[\left| adj\,A \right|={{\left| A \right|}^{2}}\] |
| C. | \[\left| adj\,A \right|={{\left| A \right|}^{3}}\] |
| D. | \[{{\left| adj\,A \right|}^{2}}=\left| A \right|\] |
| Answer» C. \[\left| adj\,A \right|={{\left| A \right|}^{3}}\] | |
| 1211. |
If \[\alpha .\beta .\gamma \in R,\]then the determinant\[\Delta =\left| \begin{matrix} {{({{e}^{i\alpha }}+{{e}^{-i\alpha }})}^{2}} & {{({{e}^{i\alpha }}-{{e}^{-i\alpha }})}^{2}} & 4 \\ {{({{e}^{i\beta }}+{{e}^{-i\beta }})}^{2}} & {{({{e}^{i\beta }}-{{e}^{-i\beta }})}^{2}} & 4 \\ {{({{e}^{i\gamma }}+{{e}^{-i\gamma }})}^{2}} & {{({{e}^{i\gamma }}-{{e}^{-i\gamma }})}^{2}} & 4 \\ \end{matrix} \right|\] is |
| A. | Independent of \[\alpha ,\beta \] and \[\gamma \] |
| B. | Dependent on \[\alpha ,\beta \] and \[\gamma \] |
| C. | Independent of \[\alpha ,\beta \] only |
| D. | Independent of \[\alpha ,\gamma \] only |
| Answer» B. Dependent on \[\alpha ,\beta \] and \[\gamma \] | |
| 1212. |
If \[f(x),\,\,g(x)\] and \[h(x)\] are three polynomials of degree 2 and \[\Delta (x)=\left| \begin{matrix} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \\ \end{matrix} \right|,\]then \[\Delta (x)\] is a polynomial of degree |
| A. | 2 |
| B. | 3 |
| C. | At most 2 |
| D. | At most 3 |
| Answer» D. At most 3 | |
| 1213. |
The maximum and minimum value of \[(3\times 3)\]determinant whose elements belongs to \[\{0,1\}\] is |
| A. | \[1,-1\] |
| B. | \[2,-2\] |
| C. | \[4,-4\] |
| D. | None of these |
| Answer» C. \[4,-4\] | |
| 1214. |
If the system of equations \[\lambda {{x}_{1}}+{{x}_{2}}+{{x}_{3}}=1,\] \[{{x}_{1}}+\lambda {{x}_{2}}+{{x}_{3}}=1,\] \[{{x}_{1}}+{{x}_{2}}+\lambda {{x}_{3}}=1\] is consistent, then \[\lambda \] can be |
| A. | \[5\] |
| B. | \[-2/3\] |
| C. | \[-3\] |
| D. | None of these |
| Answer» E. | |
| 1215. |
If \[\left| \begin{matrix} {{x}^{n}} & {{x}^{n+2}} & {{x}^{2n}} \\ 1 & {{x}^{a}} & a \\ {{x}^{n+5}} & {{x}^{a+6}} & {{x}^{2n+5}} \\ \end{matrix} \right|=0\,\forall \,x\,\in R,\] where \[n\in N\] then value of 'a' is |
| A. | \[n\] |
| B. | \[n-1\] |
| C. | \[n+1\] |
| D. | None of these |
| Answer» D. None of these | |
| 1216. |
The value of the determinant \[\left| \begin{matrix} {{\cos }^{2}}54{}^\circ & {{\cos }^{2}}36{}^\circ & \cot 135{}^\circ \\ {{\sin }^{2}}53{}^\circ & \cot 135{}^\circ & {{\sin }^{2}}37{}^\circ \\ \cot 135{}^\circ & co{{s}^{2}}25{}^\circ & {{\cos }^{2}}65{}^\circ \\ \end{matrix} \right|\] is equal to |
| A. | \[-2\] |
| B. | \[-1\] |
| C. | \[0\] |
| D. | \[1\] |
| Answer» D. \[1\] | |
| 1217. |
If \[\omega \] is the cube root of unity, then what is one root of the equation \[\left| \begin{matrix} {{x}^{2}} & -2x & -2{{\omega }^{2}} \\ 2 & \omega & -\omega \\ 0 & \omega & 1 \\ \end{matrix} \right|=0?\] |
| A. | \[1\] |
| B. | \[-2\] |
| C. | \[2\] |
| D. | \[\omega \] |
| Answer» C. \[2\] | |
| 1218. |
If \[A=\left[ \begin{matrix} 1 & 2 \\ 0 & 3 \\ \end{matrix} \right]\] is a \[2\times 2\] matrix and \[f(x)={{x}^{2}}-x+2\] is a polynomial, then what is \[f(A)\]? |
| A. | \[\left[ \begin{matrix} 1 & 7 \\ 1 & 7 \\ \end{matrix} \right]\] |
| B. | \[\left[ \begin{matrix} 2 & 6 \\ 0 & 8 \\ \end{matrix} \right]\] |
| C. | \[\left[ \begin{matrix} 2 & 6 \\ 0 & 6 \\ \end{matrix} \right]\] |
| D. | \[\left[ \begin{matrix} 2 & 6 \\ 0 & 7 \\ \end{matrix} \right]\] |
| Answer» C. \[\left[ \begin{matrix} 2 & 6 \\ 0 & 6 \\ \end{matrix} \right]\] | |
| 1219. |
If D is determinant of order 3 and D' is the determinant obtained by replacing the elements of D by their cofactors, then which one of the following is correct? |
| A. | \[D'={{D}^{2}}\] |
| B. | \[D'={{D}^{3}}\] |
| C. | \[D'=2{{D}^{2}}\] |
| D. | \[D'=3{{D}^{3}}\] |
| Answer» B. \[D'={{D}^{3}}\] | |
| 1220. |
If \[{{e}^{i\theta }}=\cos \theta +i\sin \theta ,\] then the value of \[\left| \begin{matrix} 1 & {{e}^{i\pi /3}} & {{e}^{i\pi /4}} \\ {{e}^{-i\pi /3}} & 1 & {{e}^{i2\pi /3}} \\ {{e}^{-i\pi /4}} & {{e}^{-i2\pi /3}} & 1 \\ \end{matrix} \right|\]is |
| A. | \[-2+\sqrt{2}\] |
| B. | \[2-\sqrt{2}\] |
| C. | \[-2-\sqrt{2}\] |
| D. | 1 |
| Answer» D. 1 | |
| 1221. |
If \[a\ne b\ne c\] are all positive, then the value of the determinant \[\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{matrix} \right|\] is |
| A. | Non-negative |
| B. | Non-positive |
| C. | Negative |
| D. | Positive |
| Answer» D. Positive | |
| 1222. |
Matrix \[{{M}_{r}}\] is defined as \[{{M}_{r}}=\left( \begin{matrix} r & r-1 \\ r-1 & r \\ \end{matrix} \right),\]\[r\in N\]. The value of \[det({{M}_{1}})+\det \,({{M}_{2}})+\det \,({{M}_{3}})+....+\det \,({{M}_{2014}})\] is |
| A. | \[2013\] |
| B. | \[2014\] |
| C. | \[{{(2013)}^{2}}\] |
| D. | \[{{(2014)}^{2}}\] |
| Answer» E. | |
| 1223. |
Suppose \[\Delta =\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|\] and\[\Delta '=\left| \begin{matrix} {{a}_{1}}+p{{b}_{1}} & {{b}_{1}}+q{{c}_{1}} & {{c}_{1}}+r{{a}_{1}} \\ {{a}_{2}}+p{{b}_{2}} & {{b}_{2}}+q{{c}_{2}} & {{c}_{2}}+r{{a}_{2}} \\ {{a}_{3}}+p{{b}_{3}} & {{b}_{3}}+q{{c}_{3}} & {{c}_{3}}+r{{a}_{3}} \\ \end{matrix} \right|\]. Then |
| A. | \[\Delta '=\Delta \] |
| B. | \[\Delta '=\Delta \,\,(1-pqr)\] |
| C. | \[\Delta '=\Delta \,\,(1+p+q+r)\] |
| D. | \[\Delta '=\Delta \,\,(1+pqr)\] |
| Answer» E. | |
| 1224. |
If A is a square matrix of order n, then adj (adj A) is equal to |
| A. | \[|A{{|}^{n-1}}A\] |
| B. | \[|A{{|}^{n}}A\] |
| C. | \[|A{{|}^{n-2}}A\] |
| D. | None of these |
| Answer» D. None of these | |
| 1225. |
In a third order determinant, each element of the first column consists of sum of two terms, each element of the second column consists of sum of three terms and each element of the third column consists of sum of four terms. Then it can be decomposed into n determinants, where n has the value |
| A. | \[1\] |
| B. | \[9\] |
| C. | \[16\] |
| D. | \[24\] |
| Answer» E. | |
| 1226. |
If \[f(x)=a+bx+c{{x}^{2}}\]and \[\alpha ,\beta ,\lambda \] are roots of the equation \[{{x}^{3}}=1,\]then \[\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{matrix} \right|\] is equal to |
| A. | \[f(\alpha )+f(\beta )+f(\lambda )\] |
| B. | \[f(\alpha )f(\beta )+f(\beta )f(\lambda )+f(\gamma )+f(\alpha )\] |
| C. | \[f(\alpha )f(\beta )f(\gamma )\] |
| D. | \[-f(\alpha )f(\beta )f(\gamma )\] |
| Answer» E. | |
| 1227. |
For all values of A, B, C and P, Q, R the value of the determinant\[{{(x+a)}^{3}}\left| \begin{matrix} \cos (A-P) & \cos (A-Q) & \cos (A-R) \\ \cos (B-P) & \cos (B-Q) & \cos (B-R) \\ \cos (C-P) & \cos (C-Q) & \cos (C-R) \\ \end{matrix} \right|\] is |
| A. | \[1\] |
| B. | \[0\] |
| C. | \[2\] |
| D. | None of these |
| Answer» C. \[2\] | |
| 1228. |
If \[f(x)=\left| \begin{matrix} \cos x & x & 1 \\ 2\sin x & {{x}^{2}} & 2x \\ \tan x & x & 1 \\ \end{matrix} \right|,\] then \[\underset{x\to 0}{\mathop{\lim }}\,\left[ \frac{f'(x)}{x} \right]\] is |
| A. | \[2\] |
| B. | \[-2\] |
| C. | \[1\] |
| D. | \[-1\] |
| Answer» C. \[1\] | |
| 1229. |
If \[C=2cos\theta ,\] then the value of the determinant\[\Delta =\left[ \begin{matrix} C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C \\ \end{matrix} \right]\] is |
| A. | \[\frac{2{{\sin }^{2}}2\theta }{\sin \theta }\] |
| B. | \[8{{\cos }^{3}}\theta -4\cos \theta +6\] |
| C. | \[\frac{2\sin 2\theta }{\sin \theta }\] |
| D. | \[8{{\cos }^{3}}\theta +4\cos \theta +6\] |
| Answer» C. \[\frac{2\sin 2\theta }{\sin \theta }\] | |
| 1230. |
If \[A=\left[ \begin{matrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \\ \end{matrix} \right],\] then det(adj (adj A)) is |
| A. | \[{{(14)}^{4}}\] |
| B. | \[{{(14)}^{3}}\] |
| C. | \[{{(14)}^{2}}\] |
| D. | \[{{(14)}^{1}}\] |
| Answer» B. \[{{(14)}^{3}}\] | |
| 1231. |
If \[{{A}^{-1}}=\left[ \begin{matrix} 1 & -2 \\ -2 & 2 \\ \end{matrix} \right],\] what is det(A)? |
| A. | \[2\] |
| B. | \[-2\] |
| C. | \[\frac{1}{2}\] |
| D. | \[-\frac{1}{2}\] |
| Answer» E. | |
| 1232. |
The determinant \[\left| \begin{matrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \\ \end{matrix} \right|\] is independent of |
| A. | x only |
| B. | \[\theta \] only |
| C. | x and \[\theta \] both |
| D. | None of these |
| Answer» C. x and \[\theta \] both | |
| 1233. |
Let \[f(x)=\left| \begin{matrix} n & n+1 & n+2 \\ ^{n}{{P}_{n}} & ^{n+1}{{P}_{n+1}} & ^{n+2}{{P}_{n+2}} \\ ^{n}{{C}_{n}} & ^{n+1}{{C}_{n+1}} & ^{n+2}{{C}_{n+2}} \\ \end{matrix} \right|,\] where the symbols have their usual meanings. The \[f(x)\] is divisible by |
| A. | \[{{n}^{2}}+n+1\] |
| B. | \[(n+1)!\] |
| C. | \[(2n+1)!\] |
| D. | None of the above |
| Answer» B. \[(n+1)!\] | |
| 1234. |
If [ ] denotes the greatest integer less than or equal to the real number under consideration and \[-1\le x |
| A. | \[[z]\] |
| B. | \[[y]\] |
| C. | [x] |
| D. | None of these |
| Answer» B. \[[y]\] | |
| 1235. |
If \[[a]\] denotes the integral part of a and \[x={{a}_{3}}y+{{a}_{2}}z,\] \[y={{a}_{1}}z+{{a}_{3}}z\] and \[z={{a}_{2}}x+{{a}_{1}}y,\]where x, y, z are not all zero. If \[{{a}_{1}}=m-[m],\] m being a non-integral constant, then \[{{a}_{1}}{{a}_{2}}{{a}_{3}}\] is |
| A. | \[>1\] |
| B. | \[>-1\] |
| C. | \[<1\] |
| D. | \[<-1\] |
| Answer» C. \[<1\] | |
| 1236. |
Let \[x |
| A. | Non-negative |
| B. | Non-positive |
| C. | Negative |
| D. | Positive |
| Answer» D. Positive | |
| 1237. |
For what values of k, does the system of linear equation \[x+y+z=2,\] \[2x+y-z=3,\] \[3x+2y+kz=4\] have a unique solution? |
| A. | \[k=0\] |
| B. | \[-1<k<1\] |
| C. | \[-2<k<2\] |
| D. | \[k\ne 0\] |
| Answer» E. | |
| 1238. |
Let \[\lambda \] and \[\alpha \] be real. The set of all values of x for which the system of linear equations \[\lambda x+(\sin \alpha )y+(cos\alpha )z=0\] \[x+(cos\alpha )y+(sin\alpha )z=0\] \[-x+(\sin \alpha )-(\cos \alpha )z=0\] has a non-trivial solution, is |
| A. | \[\left[ 0,\,\sqrt{2} \right]\] |
| B. | \[\left[ -\sqrt{2},0 \right]\] |
| C. | \[\left[ -\sqrt{2},\sqrt{2} \right]\] |
| D. | None of these |
| Answer» D. None of these | |
| 1239. |
If A is an orthogonal matrix of order 3 and \[B=\left[ \begin{matrix} 1 & 2 & 3 \\ -3 & 0 & 2 \\ 2 & 5 & 0 \\ \end{matrix} \right],\] then which of the following is/are correct? 1. \[|AB|=\pm 47\] 2. \[AB=BA\] Select the correct answer using the code given below: |
| A. | 1 only |
| B. | 2 only |
| C. | Both 1 and 2 |
| D. | Neither 1 nor 2 |
| Answer» D. Neither 1 nor 2 | |
| 1240. |
If \[\left| \begin{matrix} {{x}^{2}}+x & 3x-1 & -x+3 \\ 2x+1 & 2+{{x}^{2}} & {{x}^{3}}-3 \\ x-3 & {{x}^{2}}+4 & 3x \\ \end{matrix} \right|\]\[={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+....+{{a}_{7}}{{x}^{7}},\] then the value of \[{{a}_{0}}\] is |
| A. | \[25\] |
| B. | \[24\] |
| C. | \[23\] |
| D. | \[21\] |
| Answer» E. | |
| 1241. |
If \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}\ne -2\] and\[f(x)=\left| \begin{matrix} (1+{{a}^{2}})x & (1+{{b}^{2}})x & (1+{{c}^{2}})x \\ (1+{{a}^{2}})x & (1+{{b}^{2}})x & (1+{{c}^{2}})x \\ (1+{{a}^{2}})x & (1+{{b}^{2}})x & (1+{{c}^{2}})x \\ \end{matrix} \right|\]then \[f(x)\] is a polynomial of degree |
| A. | \[1\] |
| B. | 0 |
| C. | \[3\] |
| D. | \[2\] |
| Answer» E. | |
| 1242. |
For what value of p, is the system of equations : \[{{p}^{3}}x+{{(p+1)}^{3}}y={{(p+2)}^{3}}\] \[px+(p+1)y=p+2\] \[x+y=1\] consistent? |
| A. | \[p=0\] |
| B. | \[p=1\] |
| C. | \[p=-1\] |
| D. | For all \[p>1\] |
| Answer» D. For all \[p>1\] | |
| 1243. |
Consider the system of linear equations \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}=0,\] \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}=0,\] \[{{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}z+{{d}_{3}}=0,\] Let us denote by \[\Delta (a,b,c)\] the determinant \[\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|\], if \[\Delta \,(a,b,c)\#0,\] then the value of x in the unique solution of the above equations is |
| A. | \[\frac{\Delta (b,c,d)}{\Delta (a,b,c)}\] |
| B. | \[\frac{-\Delta (b,c,d)}{\Delta (a,b,c)}\] |
| C. | \[\frac{\Delta (a,c,d)}{\Delta (a,b,c)}\] |
| D. | \[-\frac{\Delta (a,b,d)}{\Delta (a,b,c)}\] |
| Answer» B. \[\frac{-\Delta (b,c,d)}{\Delta (a,b,c)}\] | |
| 1244. |
If \[\left. \begin{align} & f(x)=sin\text{ }x,when\,\,x\,\,is\,\,rational \\ & \,\,\,\,\,\,\,\,\,\,=\,\cos x,when\,\,x\,\,is\,\,irrational \\ \end{align} \right\}\] |
| A. | Discontinuous at \[x=n\pi +\pi /4\] |
| B. | Continuous at \[x=n\pi +\pi /4\] |
| C. | Discontinuous at all x |
| D. | None of these |
| Answer» C. Discontinuous at all x | |
| 1245. |
If \[{{I}_{n}}=\frac{{{d}^{n}}}{d{{x}^{n}}}({{x}^{n}}\log \,x)\], then \[{{I}_{n}}-n{{I}_{n-1}}=\] |
| A. | n |
| B. | \[n-1\] |
| C. | \[n!\] |
| D. | \[\left( n-1 \right)!\] |
| Answer» E. | |
| 1246. |
Suppose\[f(x)={{e}^{ax}}+{{e}^{bx}}\], where\[a\ne b\], and that \[f{{\,}^{n}}(x)-2f'(x)-15f(x)=0\] for all x. Then the product ab is |
| A. | 25 |
| B. | 9 |
| C. | -15 |
| D. | -9 |
| Answer» D. -9 | |
| 1247. |
Let \[3f(x)-2f(1/x)=x,\] then \[f'(2)\] is equal to |
| A. | \[\frac{2}{7}\] |
| B. | \[\frac{1}{2}\] |
| C. | \[2\] |
| D. | \[\frac{7}{2}\] |
| Answer» C. \[2\] | |
| 1248. |
What is the value of k for which the following function f(x) is continuous for all x? \[f(x)=\left\{ \begin{align} & \frac{{{x}^{3}}-3x+2}{{{(x-1)}^{2}}},for\,\,x\ne 1 \\ & k\,\,\,\,\,\,\,\,,for\,\,x=1 \\ \end{align} \right.\] |
| A. | 3 |
| B. | 2 |
| C. | 1 |
| D. | -1 |
| Answer» B. 2 | |
| 1249. |
If \[u=f({{x}^{3}}),v=g({{x}^{2}}),f'(x)=\cos x\] and \[g'(x)=\sin x,\] then \[\frac{du}{dv}=\] |
| A. | \[\frac{1}{2}x\cos {{x}^{3}}\cos ec\,{{x}^{2}}\] |
| B. | \[\frac{3}{2}x\cos {{x}^{3}}\cos ec\,{{x}^{2}}\] |
| C. | \[\frac{1}{2}x\sec {{x}^{3}}\sin \,{{x}^{2}}\] |
| D. | \[\frac{3}{2}x\sec {{x}^{3}}\cos ec\,{{x}^{2}}\] |
| Answer» C. \[\frac{1}{2}x\sec {{x}^{3}}\sin \,{{x}^{2}}\] | |
| 1250. |
If the functions \[f(x)\] and \[g(x)\] are continuous in [a, b] and differentiable in (a, b), then the equation \[\left| \begin{matrix} f(a) & f(b) \\ g(a) & g(b) \\ \end{matrix} \right|=(b-a)\left| \begin{matrix} f(a) & f'(x) \\ g(a) & g'(x) \\ \end{matrix} \right|\] has in the interval [a, b] |
| A. | At least one root |
| B. | Exactly one root |
| C. | At most one root |
| D. | No root |
| Answer» B. Exactly one root | |