Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

1401.

If \[|z-2|=\min \{|z-1|,|z-5|\},\] where z is a complex number, then

A. \[\operatorname{Re}(z)=\frac{3}{2}\]
B. \[\operatorname{Re}(z)=\frac{7}{2}\]
C. \[\operatorname{Re}(z)\in \left\{ \frac{3}{2},\frac{7}{2} \right\}\]
D. None of these
Answer» D. None of these
1402.

If the roots of \[a{{x}^{2}}+bx+c=0\] are \[\sin \alpha \] and \[\cos \alpha \] for some \[\alpha ,\] then which one of the following is correct?

A. \[{{a}^{2}}+{{b}^{2}}=2ac\]
B. \[{{b}^{2}}-{{c}^{2}}=2ab\]
C. \[{{b}^{2}}-{{a}^{2}}=2ac\]
D. \[{{b}^{2}}+{{c}^{2}}=2ab\]
Answer» D. \[{{b}^{2}}+{{c}^{2}}=2ab\]
1403.

If the point \[{{z}_{1}}=1+i\] where \[i=\sqrt{-1}\] is the reflection of a point \[{{z}_{2}}=x+iy\] in the line \[i\bar{z}-iz=5,\] then the point \[{{z}_{2}}\] is     

A. \[1+4i\]
B. \[4+i\]
C. \[1-i\]    
D. \[-1-i\]
Answer» B. \[4+i\]
1404.

If \[\alpha \] and \[\beta \] be the values of x in \[{{m}^{2}}({{x}^{2}}-x)+2mx+3=0\] and \[{{m}_{1}}\] and \[{{m}_{2}}\] be two values of m for which \[\alpha \] and \[\beta \] are connected by the relation \[\frac{\alpha }{\beta }+\frac{\beta }{\alpha }=\frac{4}{3}.\] Then the value of \[\frac{m_{1}^{2}}{{{m}_{2}}}+\frac{m_{2}^{2}}{{{m}_{1}}}\] is

A. 6
B. 68
C. \[\frac{3}{68}\]             
D. \[-\frac{68}{3}\]
Answer» E.
1405.

The solution of \[2\sqrt{2}\,\,{{x}^{4}}=(\sqrt{3}-1)+i(\sqrt{3}+1)\] is

A. \[\pm \,\,\left( \cos \frac{5\pi }{48}+i\sin \frac{5\pi }{48} \right)\]
B. \[\pm \,\,\left( \cos \frac{7\pi }{48}+i\sin \frac{7\pi }{48} \right)\]
C. \[\pm \,\,\left( \cos \frac{19\pi }{48}-i\sin \frac{19\pi }{48} \right)\]
D. None of these.
Answer» B. \[\pm \,\,\left( \cos \frac{7\pi }{48}+i\sin \frac{7\pi }{48} \right)\]
1406.

For the complex numbers \[{{z}_{1}}\] and \[{{z}_{2}}\] if \[|1-{{\bar{z}}_{1}}{{z}_{2}}{{|}^{2}}-|{{z}_{1}}-{{z}_{2}}{{|}^{2}}=k(1-|{{z}_{1}}{{|}^{2}})(1-|{{z}_{2}}{{|}^{2}})\] then ?k? equals to

A. 1                     
B. \[-1\]  
C. 2                     
D. \[-2\]
Answer» B. \[-1\]  
1407.

If both the roots of \[k(6{{x}^{2}}+3)+rx+2{{x}^{2}}-1=0\]and \[6k(2{{x}^{2}}+1)+px+4{{x}^{2}}-2=0\] are common, then \[2r-p\]is equal to

A. \[-1\]    
B. 0   
C. 1                     
D. 2
Answer» C. 1                     
1408.

If \[z=\frac{\pi }{4}{{(1+i)}^{4}}\left( \frac{1-\sqrt{\pi }i}{\sqrt{\pi }+i}+\frac{\sqrt{\pi }-i}{1+\sqrt{\pi }i} \right),\] then \[\left( \frac{|z|}{am{{p}^{(z)}}} \right)\] equals

A. 1         
B. \[\pi \]    
C. \[3\pi \]             
D. 4
Answer» E.
1409.

The value of a for which the sum of the squares of   the   roots   of   the   equation \[2{{x}^{2}}-2(a-2)x-(a+1)=0\] is least, is

A. 1                     
B. \[3/2\]  
C. 2                     
D. None
Answer» C. 2                     
1410.

If \[A=\left| x\in IR:{{x}^{2}}+6x-70\},\] then which of the following is/ are correct? 1. \[(A\cap B)=(-2,1)\] 2. \[(A\backslash B)=(-7,-2)\] Select the correct answer using the code given below:

A. 1 only              
B. 2 Only
C. Both 1 and 2    
D. Neither 1 nor 2
Answer» D. Neither 1 nor 2
1411.

If \[|z|=\max \,\{|z-1|,\,|z+1|\}\] then

A. \[|z+\bar{z}|=\frac{1}{2}\]
B. \[z+\bar{z}=1\]
C. \[|z+\bar{z}|=1\]     
D. None of these
Answer» E.
1412.

If \[\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=.......\left| {{z}_{n}} \right|=1,\] then the value of \[\left| {{z}_{1}}+{{z}_{2}}+....{{z}_{n}} \right|-\left| \frac{1}{{{z}_{1}}}+\frac{1}{{{z}_{2}}}+......+\frac{1}{{{z}_{n}}} \right|\] is,

A. 0                     
B. 1
C. \[-1\]                
D. None
Answer» B. 1
1413.

The greatest and the least absolute value of \[z+1,\] where \[|z+4|\le 3\] are respectively

A. 6 and 0            
B. 10 and 6         
C. 4 and 3            
D. None of these
Answer» B. 10 and 6         
1414.

If \[(a+ib)(c+id)(e+if)(g+ih)=A+iB,\] then \[({{a}^{2}}+{{b}^{2}})({{c}^{2}}+{{d}^{2}})({{e}^{2}}+{{f}^{2}})({{g}^{2}}+{{h}^{2}})=\]

A. \[{{A}^{2}}+{{B}^{2}}\]          
B. \[{{A}^{2}}-{{B}^{2}}\]
C. \[{{A}^{2}}\]             
D. \[{{B}^{2}}\]
Answer» B. \[{{A}^{2}}-{{B}^{2}}\]
1415.

What is \[\frac{{{(1+i)}^{4n+5}}}{{{(1-i)}^{4n+3}}}\] equal to, where n is a natural number and \[i=\sqrt{-1}\]?

A. 2                     
B. \[2i\]  
C. \[-2\]   
D. i
Answer» B. \[2i\]  
1416.

If one root of the equation \[(1-m){{x}^{2}}+1x+1=0\]is double the other and 1 is real, then what is the greatest value of m?

A. \[-\frac{9}{8}\]  
B. \[\frac{9}{8}\]   
C. \[-\frac{8}{9}\]             
D. \[\frac{8}{9}\]
Answer» C. \[-\frac{8}{9}\]             
1417.

If \[\alpha ,\beta \] are real and \[{{\alpha }^{2}},{{\beta }^{2}}\] are the roots of the equation \[{{a}^{2}}{{x}^{2}}-x+1-{{a}^{2}}=0\left( \frac{1}{\sqrt{2}}

A. \[{{a}^{2}}\]                          
B. \[\frac{1-{{a}^{2}}}{{{a}^{2}}}\]
C. \[1-{{a}^{2}}\]          
D. \[1+{{a}^{2}}\]
Answer» C. \[1-{{a}^{2}}\]          
1418.

If \[z=x+iy,\,\,{{z}^{1/3}}=a-ib,\] then \[\frac{x}{a}-\frac{y}{b}=k({{a}^{2}}-{{b}^{2}})\] where k is equal to

A. 1    
B. 2    
C. 3                     
D. 4
Answer» E.
1419.

Let \[{{A}_{0}}{{A}_{1}}{{A}_{2}}{{A}_{3}}{{A}_{4}}{{A}_{5}}\] be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments \[{{A}_{0}}{{A}_{1}},{{A}_{0}}{{A}_{2}}\] and \[{{A}_{0}}{{A}_{4}}\] is

A. \[\frac{3}{4}\] 
B. \[3\sqrt{3}\]
C. 3                     
D. \[\frac{3\sqrt{3}}{2}\]
Answer» D. \[\frac{3\sqrt{3}}{2}\]
1420.

If \[\omega =\frac{z}{z-\frac{1}{3}i}\] and \[|\omega |=1,\] then z lies on

A. an ellipse      
B. a circle
C. a straight line   
D. a parabola
Answer» D. a parabola
1421.

A value of b for which the equations \[{{x}^{2}}+bx-1=0\] \[{{x}^{2}}+x+b=0\] have one root in common is

A. \[-\sqrt{2}\]       
B. \[-i\sqrt{3}\]
C. \[i\sqrt{5}\]       
D. \[\sqrt{2}\]
Answer» C. \[i\sqrt{5}\]       
1422.

If the roots of the quadratic equation\[{{x}^{2}}+px+q=0\] are \[\tan 30{}^\circ \] and \[\tan 15{}^\circ \] respectively, then the value of \[2+q-p\] is

A. 2  
B. 3    
C. 0                     
D. 1
Answer» C. 0                     
1423.

The fractional part of \[\frac{{{2}^{4n}}}{15}\] is

A. \[\frac{1}{15}\]
B. \[\frac{2}{15}\]
C. \[\frac{4}{15}\]
D. None of these
Answer» B. \[\frac{2}{15}\]
1424.

The greatest integer less than or equal to; \[{{(\sqrt{2}+1)}^{6}}\] is

A. 196
B. 197
C. 198
D. 199
Answer» C. 198
1425.

If \[{{P}_{n}}\] denotes the product of the binomial coefficients in the expansion of \[{{(1+x)}^{n}}\], then \[\frac{{{P}_{n+1}}}{{{P}_{n}}}\]  equals

A. \[\frac{n+1}{n!}\]
B. \[\frac{{{n}^{n}}}{n!}\]
C. \[\frac{{{(n+1)}^{n}}}{(n+1)!}\]
D. \[\frac{{{(n+1)}^{n+1}}}{(n+1)!}\]
Answer» E.
1426.

The coefficient of \[{{x}^{n}}\] in the expansion of \[{{e}^{{{e}^{x}}}}\] is

A. \[\frac{{{e}^{x}}}{n!}\]
B. \[\frac{{{n}^{n}}}{n!}\]
C. \[\frac{1}{n!}\]
D. None of these
Answer» E.
1427.

If the third term in the expansion of \[{{[x+{{x}^{{{\log }_{\,10}}\,x}}]}^{5}}\] is \[{{10}^{6}}\], then x may be

A. 1
B. \[\sqrt{10}\]
C. 10
D. \[{{10}^{-2/5}}\]
Answer» D. \[{{10}^{-2/5}}\]
1428.

If x is so small that \[{{x}^{3}}\] and higher powers of x may be neglected, then \[\frac{{{(1+x)}^{\frac{3}{2}}}-{{\left( 1+\frac{1}{2}x \right)}^{3}}}{{{(1-x)}^{\frac{1}{2}}}}\] may be approximated as

A. \[1-\frac{3}{8}{{x}^{2}}\]
B. \[3x+\frac{3}{8}{{x}^{2}}\]
C. \[-\frac{3}{8}{{x}^{2}}\]
D. \[\frac{x}{2}-\frac{3}{8}{{x}^{2}}\]
Answer» D. \[\frac{x}{2}-\frac{3}{8}{{x}^{2}}\]
1429.

What is the coefficient of \[{{x}^{3}}\] in \[\frac{(3-2x)}{{{(1+3x)}^{3}}}?\]

A. -272
B. -540
C. -870
D. -918
Answer» E.
1430.

\[\frac{{{C}_{0}}}{1}+\frac{{{C}_{2}}}{3}+\frac{{{C}_{4}}}{5}+\frac{{{C}_{6}}}{7}+....=\]

A. \[\frac{{{2}^{n+1}}}{n+1}\]
B. \[\frac{{{2}^{n+1}}-1}{n+1}\]
C. \[\frac{{{2}^{n}}}{n+1}\]
D. None of these
Answer» D. None of these
1431.

\[\frac{1}{1.2}+\frac{1.3}{1.2.3.4}+\frac{1.3.5}{1.2.3.4.5.6}+....\infty =\]

A. \[\sqrt{e}\]        
B. \[\sqrt{e}+1\]
C. \[\sqrt{e}-1\]
D. \[e-1\]
Answer» D. \[e-1\]
1432.

The value of \[{{(}^{7}}{{C}_{0}}+{{\,}^{7}}{{C}_{1}})+{{(}^{7}}{{C}_{1}}+{{\,}^{7}}{{C}_{2}})+...+\]\[{{(}^{7}}{{C}_{6}}+{{\,}^{7}}{{C}_{7}})\] is

A. \[{{2}^{8}}-2\]
B. \[{{2}^{8}}-1\]
C. \[{{2}^{8}}+1\]
D. \[{{2}^{8}}\]
Answer» B. \[{{2}^{8}}-1\]
1433.

If \[\sum\limits_{r=0}^{n}{\frac{r+2}{r+1}{{\,}^{n}}{{C}_{r}}=\frac{{{2}^{8}}-1}{6}}\], then n is

A. 8
B. 4
C. 6
D. 5
Answer» E.
1434.

The coefficient of \[{{x}^{-7}}\] in the expansion of \[{{\left[ ax-\frac{1}{b{{x}^{2}}} \right]}^{11}}\] will be:

A. \[\frac{462}{{{b}^{5}}}{{a}^{6}}\]
B. \[\frac{462{{a}^{5}}}{{{b}^{6}}}\]
C. \[\frac{-462{{a}^{5}}}{{{b}^{6}}}\]
D. \[\frac{-462{{a}^{6}}}{{{b}^{5}}}\]
Answer» C. \[\frac{-462{{a}^{5}}}{{{b}^{6}}}\]
1435.

The coefficient of \[{{x}^{m}}\] in \[{{(1+x)}^{m}}+{{(1+x)}^{m+1}}+......+{{(1+x)}^{n}},m\le n\] is

A. \[^{n+1}{{C}_{m+1}}\]
B. \[^{n-1}{{C}_{m-1}}\]
C. \[^{n}{{C}_{m}}\]     
D. \[^{n}{{C}_{m+1}}\]
Answer» B. \[^{n-1}{{C}_{m-1}}\]
1436.

Find the 7th term from the end in the expansion of \[{{\left( x-\frac{2}{{{x}^{2}}} \right)}^{10}}\].

A. \[^{10}{{C}_{4}}\]
B. \[^{10}{{C}_{4}}{{.2}^{4}}x\]
C. \[{{2}^{4}}.{{x}^{2}}\]
D. \[^{10}{{C}_{4}}{{.2}^{4}}\left( \frac{1}{{{x}^{2}}} \right)\]
Answer» E.
1437.

If the fourth term in the expansion of \[{{\left( \sqrt{{{x}^{\left( \frac{1}{\log \,x+1} \right)}}}+{{x}^{1/12}} \right)}^{6}}\] is equal to 200 and \[\operatorname{x} > 1\], then x is equal to \[(log=lo{{g}_{10}})\]

A. \[{{10}^{\sqrt{2}}}\]
B. 10
C. \[{{10}^{4}}\]
D. None of these
Answer» C. \[{{10}^{4}}\]
1438.

If the sum of the coefficients in the expansion of \[{{(1-3x+10{{x}^{2}})}^{n}}\] is a and if the sum of the coefficients in the expansion of \[{{(1+{{x}^{2}})}^{n}}\] is b, then

A. \[a=3b\]
B. \[a={{b}^{3}}\]
C. \[b={{a}^{3}}\]
D. None of these
Answer» C. \[b={{a}^{3}}\]
1439.

If \[\frac{{{e}^{x}}}{1-x}={{B}_{0}}+{{B}_{1}}x+{{B}_{2}}{{x}^{2}}+...+{{B}_{n}}{{x}^{n}}\] then \[{{B}_{n}}-{{B}_{n-1}}\] is

A. \[\frac{1}{n!}-\frac{1}{(n-1)!}\]
B. \[\frac{1}{n!}\]
C. \[\frac{1}{(n-1)!}\]
D. \[\frac{1}{n!}+\frac{1}{(n-1)!}\]
Answer» C. \[\frac{1}{(n-1)!}\]
1440.

If \[x\ne 0\], then the sum of the series\[1+\frac{x}{2!}+\frac{2{{x}^{2}}}{3!}+\frac{3{{x}^{3}}}{4!}+.......\infty \] is

A. \[\frac{{{e}^{x}}+1}{x}\]
B. \[\frac{{{e}^{x}}\,(x-1)}{x}\]
C. \[\frac{{{e}^{x}}\,(x-1)+1}{x}\]
D. \[\frac{{{e}^{x}}\,(x-1)+1+x}{x}\]
Answer» E.
1441.

The value of\[\left( \begin{matrix}    30  \\    0  \\ \end{matrix} \right)\left( \begin{matrix}    30  \\    10  \\ \end{matrix} \right)-\left( \begin{matrix}    30  \\    1  \\ \end{matrix} \right)\left( \begin{matrix}    30  \\    11  \\ \end{matrix} \right)+\left( \begin{matrix}    30  \\    2  \\ \end{matrix} \right)\left( \begin{matrix}    30  \\    12  \\ \end{matrix} \right)...\]\[+\left( \begin{matrix}    30  \\    20  \\ \end{matrix} \right)\left( \begin{matrix}    30  \\    30  \\ \end{matrix} \right)\] is where \[\left( \begin{matrix}    n  \\    r  \\ \end{matrix} \right)={{\,}^{n}}{{C}_{r}}\]

A. \[\left( \begin{matrix}    30  \\    10  \\ \end{matrix} \right)\]
B. \[\left( \begin{matrix}    30  \\    15  \\ \end{matrix} \right)\]
C. \[\left( \begin{matrix}    60  \\    30  \\ \end{matrix} \right)\]
D. \[\left( \begin{matrix}    31  \\    10  \\ \end{matrix} \right)\]
Answer» B. \[\left( \begin{matrix}    30  \\    15  \\ \end{matrix} \right)\]
1442.

The number of integral terms in the expansion of \[{{(\sqrt{3}+\sqrt[8]{5})}^{256}}\] is

A. 35
B. 32
C. 33
D. 34
Answer» D. 34
1443.

If number of terms in the expansion of\[{{(x-2y+3z)}^{n}}\] is 45, then n=

A. 7
B. 8
C. 9
D. \[{{6}^{10}}\]
Answer» C. 9
1444.

The sum \[1+\frac{1+a}{2!}+\frac{1+a+{{a}^{2}}}{3!}+.....\infty \] is equal to

A. \[{{e}^{a}}\]
B. \[\frac{{{e}^{a}}-e}{a-1}\]
C. \[(a-1){{e}^{a}}\]
D. \[(a+1){{e}^{a}}\]
Answer» C. \[(a-1){{e}^{a}}\]
1445.

If \[{{C}_{0}},{{C}_{1}},\,{{C}_{2}}{{,}^{.}}.......,\,\,{{C}_{15}}\] are binomial coefficients in \[{{(1+x)}^{15}}\], then\[\frac{{{C}_{1}}}{{{C}_{0}}}+2\frac{{{C}_{2}}}{{{C}_{1}}}+3\frac{{{C}_{3}}}{{{C}_{2}}}+....+15\frac{{{C}_{15}}}{{{C}_{14}}}=\]

A. 60
B. 120
C. 64
D. 124
Answer» C. 64
1446.

The co-efficient of \[{{x}^{n}}\] in the expansion of\[\frac{{{e}^{7x}}+{{e}^{x}}}{{{e}^{3x}}}\] is

A. \[\frac{{{4}^{n-1}}+{{(-2)}^{n}}}{n!}\]
B. \[\frac{{{4}^{n-1}}+{{2}^{n}}}{n!}\]
C. \[\frac{{{4}^{n}}+{{(-2)}^{n}}}{n!}\]
D. \[\frac{{{4}^{n-1}}+{{(-2)}^{n-1}}}{n!}\]
Answer» D. \[\frac{{{4}^{n-1}}+{{(-2)}^{n-1}}}{n!}\]
1447.

If \[{{(1+x)}^{15}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}+...+{{C}_{15}}{{x}^{15}}\] then\[{{C}_{2}}+2{{C}_{3}}+3{{C}_{4}}+.....+14{{C}_{15}}\] is equal to

A. \[{{14.2}^{14}}\]
B. \[{{13.2}^{14}}+1\]
C. \[{{13.2}^{14}}-1\]
D. None of these
Answer» C. \[{{13.2}^{14}}-1\]
1448.

The coefficient of \[{{x}^{83}}\] in \[{{(1+x+{{x}^{2}}+{{x}^{3}}+{{x}^{4}})}^{n}}\]\[{{(1-x)}^{n+3}},is-{{\,}^{n}}{{C}_{2\lambda }}\], then find the value of \[\lambda \]

A. 12
B. 10
C. 9
D. 8
Answer» E.
1449.

The approximate value of \[{{(1.0002)}^{3000}}\] is

A. 1.6
B. 1.4
C. 1.8
D. 1.2
Answer» B. 1.4
1450.

The ninth term in the expansion of\[{{\left\{ {{3}^{{{\log }_{3}}\sqrt{{{25}^{x-1}}+7}}}+{{3}^{-1/8\,\,{{\log }_{3}}\left( {{5}^{x-1}}+1 \right)}} \right\}}^{10}}\]is equal to 180, then x is

A. A prime number
B. An irrational number
C. Has non-zero fractional part
D. None of these
Answer» C. Has non-zero fractional part