Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

1301.

Let \[f(x)=\left\{ \begin{align}   & \frac{1-{{\sin }^{3}}x}{3{{\cos }^{2}}x},x\frac{\pi }{2} \\ \end{align} \right.\] If f(x) is continuous at \[x=\frac{\pi }{2},(p,q)=\]

A. \[(1,4)\]
B. \[\left( \frac{1}{2},2 \right)\]
C. \[\left( \frac{1}{2},4 \right)\]
D. None of these
Answer» D. None of these
1302.

If \[f(x)=\left\{ \begin{align}   & \frac{x\log \cos x}{\log (1+{{x}^{2}})},x\ne 0 \\  & \,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,,x=0 \\ \end{align} \right.\text{then}\,\,\text{f(x)is}\] is

A. Continuous as well as differentiable at x = 0
B. Continuous but not differentiable at x = 0
C. Differentiable but not continuous at x = 0
D. Neither continuous nor differentiable at x = 0
Answer» B. Continuous but not differentiable at x = 0
1303.

Let \[f(x)=g(x).\frac{{{e}^{1/x}}-{{e}^{-1/x}}}{{{e}^{1/x}}+{{e}^{-1/x}}}\], where g is a continuous function then \[\underset{x\to 0}{\mathop{\lim }}\,f(x)\] does not exist if

A. g(x) is any constant function
B. g(x)=x
C. \[g(x)={{x}^{2}}\]
D. g(x) = x h (x), where h(x) is a polynomial.
Answer» B. g(x)=x
1304.

If\[y={{\log }^{n}}x\], where \[{{\log }^{n}}\] means log log log... (repeated n time), then \[x\,log\text{ }x\text{ }log\text{ }x\text{ }lo{{g}^{2}}x\text{ }lo{{g}^{3}}x\]\[....{{\log }^{n-1}}x{{\log }^{n}}x\frac{dy}{dx}\] is equal to

A. \[\log x\]
B. \[{{\log }^{n}}x\]
C. \[\frac{1}{\log \,x}\]
D. 1
Answer» C. \[\frac{1}{\log \,x}\]
1305.

Which one of the following is correct? The eccentricity of the conic \[\frac{{{x}^{2}}}{{{a}^{2}}+\lambda }+\frac{{{y}^{2}}}{{{b}^{2}}+\lambda }=1,(\lambda \ge 0)\]

A. Increases with increase in \[\lambda \]
B. Decreases with increase in \[\lambda \]
C. Does not change with \[\lambda \]
D. None of these
Answer» C. Does not change with \[\lambda \]
1306.

Let E be the ellipse \[\frac{{{x}^{2}}}{9}+\frac{{{y}^{2}}}{4}=1\] and C be the circle \[{{x}^{2}}+{{y}^{2}}=9.\] Let \[P=(1,2)\] and \[Q=(2,1)\] Which one of the following is correct?

A. Q lies inside C but outside E
B. Q lies outside both C and E
C. P lies inside both C and E
D. P lies inside both C but outside E.
Answer» E.
1307.

The locus of the point of intersection of two tangents of the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] which are inclined at angles \[{{\theta }_{1}}\], and \[{{\theta }_{2}}\] with the major axis such that \[{{\tan }^{2}}{{\theta }_{1}}+{{\tan }^{2}}{{\theta }_{2}}\] is constant, is

A. \[4{{x}^{2}}{{y}^{2}}+2({{x}^{2}}-{{a}^{2}})({{y}^{2}}-{{b}^{2}})=k{{({{x}^{2}}-{{a}^{2}})}^{2}}\]
B. \[4{{x}^{2}}{{y}^{2}}-2({{x}^{2}}-{{a}^{2}})({{y}^{2}}-{{b}^{2}})=k{{({{x}^{2}}-{{a}^{2}})}^{2}}\]
C. \[4{{x}^{2}}{{y}^{2}}-2({{x}^{2}}-{{a}^{2}})({{y}^{2}}-{{b}^{2}})=k{{({{x}^{2}}+{{a}^{2}})}^{2}}\]
D. None of these
Answer» C. \[4{{x}^{2}}{{y}^{2}}-2({{x}^{2}}-{{a}^{2}})({{y}^{2}}-{{b}^{2}})=k{{({{x}^{2}}+{{a}^{2}})}^{2}}\]
1308.

The curve described parametrically by \[x=2-3\sec t,y=1+4\tan t\] represents:

A. An ellipse centred at (2, 1) and of eccentricity \[\frac{3}{5}\]
B. A circle centred at (2, 1) and of radius 5 units
C. A hyperbola centred at (2, 1) & of eccentricity \[\frac{8}{5}\]
D. A hyperbola centred at \[(2,1)\]& of eccentricity \[\frac{5}{3}\]
Answer» E.
1309.

The sum of the squares of the perpendiculars on any tangent to the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] from two points on the minor axis each at a distance \[\sqrt{{{a}^{2}}-{{b}^{2}}}\] from the centre is

A. \[2{{a}^{2}}\]
B. \[2{{b}^{2}}\]
C. \[{{a}^{2}}+{{b}^{2}}\]
D. \[{{a}^{2}}-{{b}^{2}}\]
Answer» B. \[2{{b}^{2}}\]
1310.

If the focal distance of an end of the minor axis of any ellipse (referred to its axis as the axes of x and y respectively) is k and the distance between the foci is 2h, then its equation is

A. \[\frac{{{x}^{2}}}{{{k}^{2}}}+\frac{{{y}^{2}}}{{{k}^{2}}+{{h}^{2}}}=1\]
B. \[\frac{{{x}^{2}}}{{{k}^{2}}}+\frac{{{y}^{2}}}{{{h}^{2}}-{{k}^{2}}}=1\]
C. \[\frac{{{x}^{2}}}{{{k}^{2}}}+\frac{{{y}^{2}}}{{{k}^{2}}-{{h}^{2}}}=1\]
D. \[\frac{{{x}^{2}}}{{{k}^{2}}}+\frac{{{y}^{2}}}{{{h}^{2}}}=1\]
Answer» D. \[\frac{{{x}^{2}}}{{{k}^{2}}}+\frac{{{y}^{2}}}{{{h}^{2}}}=1\]
1311.

Under which one of the following conditions does the circle \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]meet the x-axis in two points on opposite sides of the origin?

A. \[c>0\]
B. \[c<0\]
C. \[c=0\] 
D. \[c\le 0\]
Answer» C. \[c=0\] 
1312.

If the angle between the straight lines joining the foci to an extremity of minor axis in an ellipse be \[90{}^\circ \]; then the eccentricity of the ellipse is

A. \[\frac{1}{2}\]
B. \[\frac{1}{\sqrt{3}}\]
C. \[\frac{1}{\sqrt{2}}\]
D. \[\frac{1}{3}\]
Answer» D. \[\frac{1}{3}\]
1313.

If the line \[y=mx+\sqrt{{{a}^{2}}{{m}^{2}}-{{b}^{2}}}\] touches the hyperbola \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\] at the point\[\varphi \]. Then \[\varphi \]=

A. \[{{\sin }^{-1}}(m)\]
B. \[{{\sin }^{-1}}\left( \frac{a}{bm} \right)\]
C. \[{{\sin }^{-1}}\left( \frac{b}{am} \right)\]
D. \[{{\sin }^{-1}}\left( \frac{bm}{a} \right)\]
Answer» D. \[{{\sin }^{-1}}\left( \frac{bm}{a} \right)\]
1314.

The equation of one of the common tangents to the parabola \[{{y}^{2}}=8x\] and \[{{x}^{2}}+{{y}^{2}}-12x+4=0\]is

A. \[y=-x+2\]
B. \[y=x-2\]
C. \[y=x+2\]
D. None of these
Answer» D. None of these
1315.

If a Point \[P(x,y)\] moves along the ellipse \[\frac{{{x}^{2}}}{25}+\frac{{{y}^{2}}}{16}=1\] and if C is the centre of the ellipse, then, 4 max \[\{CP\}+5min\{CP\}=\]

A. 25
B. 40
C. 45
D. 54
Answer» C. 45
1316.

The equation of the parabola whose focus is (0, 0) and the tangent at the vertex is \[8x-y+1=0\] is

A. \[{{x}^{2}}+{{y}^{2}}+2xy-4x+4y-4=0\]
B. \[{{x}^{2}}-4x+4y-4=0\]
C. \[{{y}^{2}}-4x+4y-4=0\]
D. \[2{{x}^{2}}+2{{y}^{2}}-4xy-x+y-4=0\]
Answer» B. \[{{x}^{2}}-4x+4y-4=0\]
1317.

If \[x=9\] is the chord of contact of the hyperbola \[{{x}^{2}}-{{y}^{2}}=9\], then the equation of the corresponding pair of tangents is

A. \[9{{x}^{2}}-8{{y}^{2}}+18x-9=0\]
B. \[9{{x}^{2}}-8{{y}^{2}}-18x+9=0\]
C. \[9{{x}^{2}}-8{{y}^{2}}-18x-9=0\]
D. \[9{{x}^{2}}-8{{y}^{2}}+18x+9=0\]
Answer» C. \[9{{x}^{2}}-8{{y}^{2}}-18x-9=0\]
1318.

If the tangents at P and Q on a parabola meet in T, Then SP, ST and SQ are in

A. A.P
B. GP.
C. H.P.
D. None of these
Answer» C. H.P.
1319.

The point \[(a,2a)\] is an interior point of region bounded by the parabola \[{{x}^{2}}=16y\] and the double ordinate through focus then

A. a<4     
B. 0<a<4
C. 0<a<2
D. a>4
Answer» D. a>4
1320.

If the chords of contact of tangents from two points \[(\alpha ,\beta )\] and \[(\gamma ,\delta )\] to the ellipse \[\frac{{{x}^{2}}}{5}+\frac{{{y}^{2}}}{2}=1\] are perpendicular, then \[\frac{\alpha \gamma }{\beta \delta }=\]

A. \[\frac{4}{25}\]
B. \[\frac{-4}{25}\]
C. \[\frac{25}{4}\]
D. \[\frac{-25}{4}\]
Answer» E.
1321.

If a variable point P on an ellipse of eccentricity e lines joining the foci \[{{S}_{1}}\] and \[{{S}_{2}}\] then the in centre of the triangle \[P{{S}_{1}}{{S}_{2}}\] lies on

A. The major axis of the ellipse
B. The circle with radius e
C. Another ellipse of eccentricity \[\sqrt{\frac{3+{{e}^{2}}}{4}}\]
D. None of these
Answer» D. None of these
1322.

The line joining (5, 0) to is divided internally in the ratio 2 : 3 at P. If \[\theta \] varies, then the locus of P is

A. A pair of straight lines
B. A circle
C. A straight line
D. None of these
Answer» C. A straight line
1323.

What is the area of the triangle formed by the lines joining the vertex of the parabola \[{{x}^{2}}=12y\] to the ends of the latus rectum?

A. 9 square units
B. 12 square units
C. 14 square units
D. 18 square units
Answer» E.
1324.

Through the vertex O at a parabola \[{{y}^{2}}=4x,\] chords OP and OQ are drawn at right angles to one another. The locus of the middle point of PQ is

A. \[{{y}^{2}}=2x+8\]
B. \[{{y}^{2}}=x+8\]
C. \[{{y}^{2}}=2x-8\]
D. \[{{y}^{2}}=x-8\]
Answer» D. \[{{y}^{2}}=x-8\]
1325.

The locus of the point of intersection of two tangents to the parabola \[{{y}^{2}}=4ax,\] which are at right angle to one another is

A. \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\]
B. \[a{{y}^{2}}=x\]
C. \[x+a=0\]
D. \[x+y\pm a=0\]
Answer» D. \[x+y\pm a=0\]
1326.

If tangents are drawn from any point on the line \[x+4a=0\] to the parabola \[{{y}^{2}}=4ax,\] then their chord of contact subtends angle at the vertex equal to

A. \[\frac{\pi }{4}\]
B. \[\frac{\pi }{3}\]
C. \[\frac{\pi }{2}\]
D. \[\frac{\pi }{6}\]
Answer» D. \[\frac{\pi }{6}\]
1327.

If the pair of lines \[a{{x}^{2}}+2(a+b)xy+b{{y}^{2}}=0\] lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then

A. \[3{{a}^{2}}-10ab+3{{b}^{2}}=0\]
B. \[3{{a}^{2}}-2ab+3{{b}^{2}}=0\]
C. \[3{{a}^{2}}+10ab+3{{b}^{2}}=0\]
D. \[3{{a}^{2}}+2ab+3{{b}^{2}}=0\]
Answer» E.
1328.

A tangent to the parabola \[{{y}^{2}}=8x,\] which makes an angle of \[45{}^\circ \] with the straight line \[y=3x+5\]is

A. \[2x-y+1=0\]
B. \[2x+y+1=0\]
C. \[x-2y+8=0\]
D. Both &
Answer» E.
1329.

If p is the length of the perpendicular form the focus S of the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] to a tangent at a point P on the ellipse, then \[\frac{2a}{SP}-1=\]

A. \[\frac{{{a}^{2}}}{{{p}^{2}}}\]
B. \[\frac{{{b}^{2}}}{{{p}^{2}}}\]
C. \[{{p}^{2}}\]
D. \[\frac{{{a}^{2}}+{{b}^{2}}}{{{p}^{2}}}\]
Answer» C. \[{{p}^{2}}\]
1330.

The common chord of \[{{x}^{2}}+{{y}^{2}}-4x-4y=0\] and \[{{x}^{2}}+{{y}^{2}}=16\] subtends at the origin an angle equal to

A. \[\frac{\pi }{6}\]
B. \[\frac{\pi }{4}\]
C. \[\frac{\pi }{3}\]
D. \[\frac{\pi }{2}\]
Answer» E.
1331.

If \[{{\left( \frac{x}{a} \right)}^{2}}+\left( {{\frac{y}{b}}^{2}} \right)=1(a>b)\] and \[{{x}^{2}}-{{y}^{2}}={{c}^{2}}\] cut at right angles, then

A. \[{{a}^{2}}+{{b}^{2}}=2{{c}^{2}}\]        
B. \[{{b}^{2}}-{{a}^{2}}=2{{c}^{2}}\]
C. \[{{a}^{2}}-{{b}^{2}}=2{{c}^{2}}\]
D. \[{{a}^{2}}-{{b}^{2}}={{c}^{2}}\]
Answer» D. \[{{a}^{2}}-{{b}^{2}}={{c}^{2}}\]
1332.

If the ellipse \[9{{x}^{2}}+16{{y}^{2}}=144\] intercepts the line \[3x+4y=12,\] then what is the length of the chord so formed?

A. 5 units
B. 6 units
C. 8 units
D. 10 units
Answer» B. 6 units
1333.

Area of the equilateral triangle inscribed in the circle \[{{x}^{2}}+{{y}^{2}}-7x+9y+5=0\] is

A. \[\frac{155}{8}\sqrt{3}\] square units
B. \[\frac{165}{8}\sqrt{3}\] square units
C. \[\frac{175}{8}\sqrt{3}\] square units
D. \[\frac{165}{8}\sqrt{3}\] square units
Answer» E.
1334.

If AB is a double ordinate of the hyperbola \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\] such that \[\Delta OAB\] is an equilateral triangle O being the origin, then the eccentricity of the hyperbola satisfies.

A. \[e>\sqrt{3}\]
B. \[1<e<\frac{2}{\sqrt{3}}\]
C. \[e=\frac{2}{\sqrt{3}}\]
D. \[e>\frac{2}{\sqrt{3}}\]
Answer» E.
1335.

The hyperbola \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\] passes through the point \[(3\sqrt{5},1)\] and the length of its laths rectum is \[\frac{4}{3}\]units. The length of the conjugate axis is

A. 2 units
B. 3 units
C. 4 units
D. 5 units
Answer» D. 5 units
1336.

The angle of intersection of the circles \[{{x}^{2}}+{{y}^{2}}=4\] and \[{{x}^{2}}+{{y}^{2}}=2x+2y\] is

A. \[\frac{\pi }{2}\]
B. \[\frac{\pi }{3}\]
C. \[\frac{\pi }{6}\]
D. \[\frac{\pi }{4}\]
Answer» E.
1337.

In the given figure, the equation of the larger circle is \[{{x}^{2}}+{{y}^{2}}+4y-5=0\] and the distance between centres is 4. Then the equation of smaller circle is

A. \[{{(x-\sqrt{7})}^{2}}+{{(y-1)}^{2}}=1\]
B. \[{{(x+\sqrt{7})}^{2}}+{{(y-1)}^{2}}=1\]
C. \[{{x}^{2}}+{{y}^{2}}=2\sqrt{7}x+2y\]
D. None of these
Answer» B. \[{{(x+\sqrt{7})}^{2}}+{{(y-1)}^{2}}=1\]
1338.

The value of m, for which the line \[y=mx+\frac{25\sqrt{3}}{3}\] is a normal to the conic \[\frac{{{x}^{2}}}{16}-\frac{{{y}^{2}}}{9}=1,\] is

A. \[-\frac{2}{\sqrt{3}}\]
B. \[\sqrt{3}\]
C. \[-\frac{\sqrt{3}}{2}\]    
D. None of these
Answer» B. \[\sqrt{3}\]
1339.

A hyperbola having the transverse axis of length \[2\sin \theta ,\] is confocal with the ellipse \[3{{x}^{2}}+4{{y}^{2}}=12.\] Then its equation is

A. \[{{x}^{2}}\cos e{{c}^{2}}\theta -{{y}^{2}}{{\sec }^{2}}\theta =1\]
B. \[{{x}^{2}}{{\sec }^{2}}\theta -{{y}^{2}}\cos e{{c}^{2}}\theta =1\]
C. \[{{x}^{2}}{{\sin }^{2}}\theta -{{y}^{2}}{{\cos }^{2}}\theta =1\]
D. \[{{x}^{2}}{{\cos }^{2}}\theta -{{y}^{2}}{{\sin }^{2}}\theta =1\]
Answer» B. \[{{x}^{2}}{{\sec }^{2}}\theta -{{y}^{2}}\cos e{{c}^{2}}\theta =1\]
1340.

The equation of a circle which passes through the point (2, 0) and whose centre is the limit of the point of intersection of the lines \[3x+5y=1\] and \[(2+c)x+5{{c}^{2}}y=1\] as c tends to 1, is

A. \[25({{x}^{2}}+{{y}^{2}})+20x+2y-60=0\]
B. \[25({{x}^{2}}+{{y}^{2}})-20x+2y+60=0\]
C. \[25({{x}^{2}}+{{y}^{2}})-20x+2y-60=0\]
D. None of these
Answer» D. None of these
1341.

Four distinct points \[(2k,3k),\,\,(1,0),\,\,(0,1)\] and \[(0,0)\] lie on a circle for

A. Only one value of k
B. \[0<k<1\]
C. \[k<0\]
D. All integral values of k
Answer» B. \[0<k<1\]
1342.

            Let \[P(a\,\,sec\theta ,b\,\,tan\,\theta )\] and Q \[Q(a\,\,sec\,\phi ,\,\,b\,tan\,\,\phi ),\]where \[\theta +\phi =\pi /2,\] be two points on the hyperbola \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1.\] If \[(h,k)\] is the point of intersection of the normal at P and Q, then kz is equal to

A. \[\frac{{{a}^{2}}+{{b}^{2}}}{a}\]
B. \[-\left( \frac{{{a}^{2}}+{{b}^{2}}}{a} \right)\]
C. \[\frac{{{a}^{2}}+{{b}^{2}}}{b}\]
D. \[-\left( \frac{{{a}^{2}}+{{b}^{2}}}{b} \right)\]
Answer» E.
1343.

Tangents at any point on the hyperbola \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\] cut the axes at A and B respectively. If the rectangle OAPB (where O is the origin)is completed, then locus of point P is given by :

A. \[\frac{{{a}^{2}}}{{{x}^{2}}}-\frac{{{b}^{2}}}{{{y}^{2}}}=1\]
B. \[\frac{{{a}^{2}}}{{{x}^{2}}}+\frac{{{b}^{2}}}{{{y}^{2}}}=1\]
C. \[\frac{{{a}^{2}}}{{{y}^{2}}}-\frac{{{b}^{2}}}{{{x}^{2}}}=1\]
D. None of these  
Answer» B. \[\frac{{{a}^{2}}}{{{x}^{2}}}+\frac{{{b}^{2}}}{{{y}^{2}}}=1\]
1344.

The equation of the image of circle \[{{x}^{2}}+{{y}^{2}}+16x-24y+183=0\] by the line mirror \[4x+7y+13=0\] is

A. \[{{x}^{2}}+{{y}^{2}}+32x-4y+235=0\]
B. \[{{x}^{2}}+{{y}^{2}}+32x+4y-235=0\]
C. \[{{x}^{2}}+{{y}^{2}}+32x-4y-235=0\]
D. \[{{x}^{2}}+{{y}^{2}}+32x+4y+235=0\]
Answer» E.
1345.

The line \[y=mx+c\] intersects the circle \[{{x}^{2}}+{{y}^{2}}={{r}^{2}}\] at the two real distinct points if

A. \[-r\sqrt{1+{{m}^{2}}}<c<r\sqrt{1+{{m}^{2}}}\]
B. \[-r<c<r\]
C. \[-r\sqrt{1-{{m}^{2}}}<c<r\sqrt{1+{{m}^{2}}}\]
D. None of these
Answer» B. \[-r<c<r\]
1346.

The point \[([P+1],[P])\](where [x] is the greatest integer less than or equal to x), lying inside the region bounded by the circle \[{{x}^{2}}+{{y}^{2}}-2x-15=0\] and \[{{x}^{2}}+{{y}^{2}}-2x-7=0,\]then

A. \[P\in [-1,0)\cup [0,1)\cup [1,2)\]
B. \[P\in [-1,\,\,2)-\{0,\,\,1\}\]
C. \[P\in (-1,\,\,2)\]
D. None of these
Answer» E.
1347.

Consider any point P on the ellipse \[\frac{{{x}^{2}}}{25}+\frac{{{y}^{2}}}{9}=1\] in the first quadrant. Let r and s represent its distances from (4, 0) and (-4, 0) respectively, then (r + s) is equal to

A. 10 unit
B. 9 unit
C. 8 unit
D. 6 unit
Answer» B. 9 unit
1348.

If OA and OB are the tangents form the origin to the circle \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\] and C is the centre of the circle, the area of the quadrilateral OACD is

A. \[\frac{1}{2}\sqrt{c({{g}^{2}}+{{f}^{2}}-c)}\]
B. \[\sqrt{c({{g}^{2}}+{{f}^{2}}-c)}\]
C. \[c\sqrt{{{g}^{2}}+{{f}^{2}}-c}\]     
D. \[\frac{\sqrt{{{g}^{2}}+{{f}^{2}}-c}}{c}\]
Answer» C. \[c\sqrt{{{g}^{2}}+{{f}^{2}}-c}\]     
1349.

Let A be the centre of the circle \[{{x}^{2}}+{{y}^{2}}-2x-4y-20=0,\] and \[B(1,7)\] and \[D(4,-2)\] are points on the circle then, if tangents be drawn at B and D, which meet at C, then area of quadrilateral ABCD is-

A. 150
B. 75
C. 75/2
D. None of these
Answer» C. 75/2
1350.

If the circle \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\] intersects the hyperbola \[xy={{c}^{2}}\] in four points \[P({{x}_{1}},{{y}_{1}}),Q({{x}_{2}},{{y}_{2}}),R({{x}_{3}},{{y}_{3}}),S({{x}_{4}},{{y}_{4}})\] Then

A. \[{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}=0\]
B. \[{{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}=2\]
C. \[{{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}=2{{c}^{4}}\]
D. \[{{y}_{1}}{{y}_{2}}{{y}_{3}}{{y}_{4}}=2{{c}^{4}}\]
Answer» B. \[{{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}=2\]