MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 2801. |
If \[u=\sqrt{{{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta }+\sqrt{{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta }\]then the difference between the maximum and minimum values of \[{{u}^{2}}\]is given by |
| A. | \[2({{a}^{2}}+{{b}^{2}})\] |
| B. | \[2\sqrt{{{a}^{2}}+{{b}^{2}}}\] |
| C. | \[{{(a+b)}^{2}}\] |
| D. | \[{{(a-b)}^{2}}\] |
| Answer» E. | |
| 2802. |
The least positive solution of \[\cot \left( \frac{\pi }{3\sqrt{3}}\sin 2x \right)=\sqrt{3}\]lies in |
| A. | \[\left( 0,\frac{\pi }{6} \right]\] |
| B. | \[\left( \frac{\pi }{9},\frac{\pi }{6} \right)\] |
| C. | \[\left( \frac{\pi }{12},\frac{\pi }{9} \right]\] |
| D. | \[\left( \frac{\pi }{3},\frac{\pi }{2} \right]\] |
| Answer» B. \[\left( \frac{\pi }{9},\frac{\pi }{6} \right)\] | |
| 2803. |
The number of solution of equation \[6\cos 2\theta +2{{\cos }^{2}}(\theta /2)+2si{{n}^{2}}\theta =0,\]\[-\pi |
| A. | 3 |
| B. | 4 |
| C. | 5 |
| D. | 6 |
| Answer» B. 4 | |
| 2804. |
Let \[0 |
| A. | 6\[\pi \] |
| B. | 7\[\pi \] |
| C. | 8\[\pi \] |
| D. | 4\[\pi \] |
| Answer» B. 7\[\pi \] | |
| 2805. |
The most general value for which tan\[\theta \]=-1\[\cos \theta =\frac{1}{\sqrt{2}}\]is (n\[\in \]z) |
| A. | \[n\pi =\frac{7\pi }{4}\] |
| B. | \[n\pi +{{(-1)}^{n}}\frac{7\pi }{4}\] |
| C. | \[2n\pi {{+}^{}}\frac{7\pi }{4}\] |
| D. | none of these |
| Answer» D. none of these | |
| 2806. |
The number of solutions of \[\sin x+\sin 2x+\sin 3x=\cos x+\cos 2x+\cos 3x,\]\[0\le x\le 2\pi \], is |
| A. | 7 |
| B. | 5 |
| C. | 4 |
| D. | 6 |
| Answer» E. | |
| 2807. |
If \[{{\tan }^{2}}\theta =2{{\tan }^{2}}\phi +1\],then \[\cos 2\theta +{{\sin }^{2}}\phi \]equals |
| A. | -1 |
| B. | 0 |
| C. | 1 |
| D. | none of these |
| Answer» C. 1 | |
| 2808. |
If \[\theta \]is eliminated from the equations \[x=a\,\cos (\theta -\alpha )\]and \[y=b\,\cos (\theta -\beta )\], then \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}-\frac{2xy}{ab}\cos (\alpha -\beta )\]is equal to |
| A. | \[{{\sec }^{2}}(\alpha -\beta )\] |
| B. | \[\cos e{{c}^{2}}(\alpha -\beta )\] |
| C. | \[{{\cos }^{2}}(-\beta )\] |
| D. | \[si{{n}^{2}}(\alpha -\beta )\] |
| Answer» E. | |
| 2809. |
\[\frac{{{\sin }^{2}}A-{{\sin }^{2}}B}{\sin A\cos A-\sin B\cos B}\]is equal to |
| A. | \[\tan (A-B)\] |
| B. | \[\tan (A+B)\] |
| C. | \[cot(A-B)\] |
| D. | \[cot(A+B)\] |
| Answer» C. \[cot(A-B)\] | |
| 2810. |
If A and B are acute postitive angles satisfying the equations 3 \[{{\sin }^{2}}A+2{{\sin }^{2}}B=1\]and 3 \[\sin 2A-2\sin 2B=0\]then A+2B is equal to |
| A. | \[\pi \] |
| B. | \[\frac{\pi }{2}\] |
| C. | \[\frac{\pi }{4}\] |
| D. | \[\frac{\pi }{6}\] |
| Answer» C. \[\frac{\pi }{4}\] | |
| 2811. |
If \[2\left| \sin 2\alpha \right|=\left| \tan \beta +\cot \beta \right|,\alpha ,\beta \in \left( \frac{\pi }{2},\pi \right)\],then the value of \[\alpha +\beta \]is |
| A. | \[\frac{3\pi }{4}\] |
| B. | \[\pi \] |
| C. | \[\frac{3\pi }{2}\] |
| D. | \[\frac{5\pi }{4}\] |
| Answer» D. \[\frac{5\pi }{4}\] | |
| 2812. |
The reflection of the point \[\vec{a}\] in the plane \[\vec{r}\].\[\vec{n}\] =q is |
| A. | \[\vec{a}+\frac{(\vec{q}-\vec{a}\,\cdot \vec{n})}{\left| {\vec{n}} \right|}\] |
| B. | \[\vec{a}+2\left( \frac{(\vec{q}-\vec{a}\,\cdot \vec{n})}{{{\left| {\vec{n}} \right|}^{2}}} \right)\vec{n}\] |
| C. | \[\vec{a}+\frac{2(\vec{q}-\vec{a}\,\cdot \vec{n})}{\left| {\vec{n}} \right|}\vec{n}\] |
| D. | none of these |
| Answer» C. \[\vec{a}+\frac{2(\vec{q}-\vec{a}\,\cdot \vec{n})}{\left| {\vec{n}} \right|}\vec{n}\] | |
| 2813. |
The length of projection of the line segment joining the points \[\left( 1,\text{ }0,\,\,-1 \right)\] and \[\left( -1,\,\,2,\,\,2 \right)\] on the plane \[x+3y-5z=6\] is equal to |
| A. | 2 |
| B. | \[\sqrt{\frac{271}{53}}\] |
| C. | \[\sqrt{\frac{472}{31}}\] |
| D. | \[\sqrt{\frac{474}{35}}\] |
| Answer» E. | |
| 2814. |
Let A (1, 1, 1), B (2, 3, 5) and C (\[-\]1,0, 2) be three points, then equation of a plane parallel to the plane ABC which is at distance 2 is |
| A. | \[2x-3y+z+2\sqrt{14}=0\] |
| B. | \[2x-3y+z-\sqrt{14}=0\] |
| C. | \[2x-3y+z+2=0\] |
| D. | \[2x-3y+z-2=0\] |
| Answer» B. \[2x-3y+z-\sqrt{14}=0\] | |
| 2815. |
The intercept made by the plane \[\vec{r}\cdot \vec{n}=q\]on the x-axis is |
| A. | \[\frac{q}{\hat{i}\cdot \vec{n}}\] |
| B. | \[\frac{\hat{i}\cdot \vec{n}}{q}\] |
| C. | \[\frac{\hat{i}\cdot \vec{n}}{q}\] |
| D. | \[\frac{q}{\left| {\vec{n}} \right|}\] |
| Answer» B. \[\frac{\hat{i}\cdot \vec{n}}{q}\] | |
| 2816. |
Line \[\vec{r}=\vec{a}+\lambda \vec{b}\] will not meet the plane \[\vec{r}\cdot \vec{n}=q\], if |
| A. | \[\vec{b}\cdot \vec{n}=0,\,\,\vec{a}\cdot \vec{n}=q\] |
| B. | \[\vec{b}\cdot \vec{n}\ne 0,\,\,\vec{a}\cdot \vec{n}\ne q\] |
| C. | \[\vec{b}\cdot \vec{n}=0,\,\,\vec{a}\cdot \vec{n}\ne q\] |
| D. | \[\vec{b}\cdot \vec{n}\ne 0,\,\,\vec{a}\cdot \vec{n}=q\] |
| Answer» D. \[\vec{b}\cdot \vec{n}\ne 0,\,\,\vec{a}\cdot \vec{n}=q\] | |
| 2817. |
The direction ratios (d,r,'s) of the normal to the plane throuth (1, 0, 0) and (0, 1, 0) which makes an angle \[\pi /4\]with the plane \[x+y=3\]are |
| A. | \[1,\,\sqrt{2,}\,1\] |
| B. | \[1,\,\,1,\,\,\sqrt{2}\] |
| C. | \[1,\,\,1\,,\,\,2\] |
| D. | \[\sqrt{2,}\,1,\,1\] |
| Answer» C. \[1,\,\,1\,,\,\,2\] | |
| 2818. |
The coordinates of the foot of the perpendicular drawn from the origin to the line joining the points (\[-\]9, 4, 5) and (10, 0, \[-\]1) will be |
| A. | (-3, 2, 1) |
| B. | (1, 2, 2) |
| C. | (4, 5, 3) |
| D. | none of these |
| Answer» E. | |
| 2819. |
What is the equation of the plane which passes through the z-axis and is perpendicular to the line\[\frac{x-a}{\cos \theta }=\frac{y+2}{\sin \theta }=\frac{z-3}{0}\]? |
| A. | \[x+y\,\text{tan}\,\theta =0\] |
| B. | \[y+x\,\text{tan}\,\theta =0\] |
| C. | \[x\,\cos \theta -y\,\sin \theta =0\] |
| D. | \[x\,\sin \theta -y\,\cos \theta =0\] |
| Answer» B. \[y+x\,\text{tan}\,\theta =0\] | |
| 2820. |
The pair of lines whose direction cosines are given by the equations \[3l+m+5n=0\] and \[6mn-2nl+5lm=0\] are |
| A. | parallel |
| B. | perpendicular |
| C. | inclined at \[{{\cot }^{-1}}\left( \frac{1}{6} \right)\] |
| D. | none of these |
| Answer» D. none of these | |
| 2821. |
The coordinates of the point p on the line\[\vec{r}=(\hat{i}+\hat{j}+\hat{k})+\lambda (-\hat{i}+\hat{j}-\hat{k})\] which is nearest to the origin is |
| A. | \[\left( \frac{2}{3},\frac{4}{3},\frac{2}{3} \right)\] |
| B. | \[\left( -\frac{2}{3},-\frac{4}{3},\frac{2}{3} \right)\] |
| C. | \[\left( \frac{2}{3},\frac{4}{3},-\frac{2}{3} \right)\] |
| D. | None of these |
| Answer» B. \[\left( -\frac{2}{3},-\frac{4}{3},\frac{2}{3} \right)\] | |
| 2822. |
The projection of the line \[\frac{x+1}{1}=\frac{y}{2}=\frac{z-1}{3}\]on the plane \[x-2y+z=6\] is the line of intersection of the plane with the plane |
| A. | \[2x+y+2=0\] |
| B. | \[3x+y-z=2\] |
| C. | \[2x-3y+8z=3\] |
| D. | none of these |
| Answer» B. \[3x+y-z=2\] | |
| 2823. |
The plane which passes through the point (3, 2, 0) and the line\[\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}\]is |
| A. | \[x-y+z=1\] |
| B. | \[x+y+z=5\] |
| C. | \[x+2y-z=1\] |
| D. | \[2x-y+z=5\] |
| Answer» B. \[x+y+z=5\] | |
| 2824. |
The plane \[\vec{r}\,\cdot \vec{n}=q\] will contain the line \[\vec{r}=\vec{a}+\lambda \vec{b}\], If |
| A. | \[\vec{b}\cdot \vec{n}\ne 0\], \[\vec{a}\,\cdot \vec{n}\ne q\] |
| B. | \[\vec{b}\,\cdot \vec{n}=0\],\[\vec{a}\cdot \vec{n}\ne q\] |
| C. | \[\vec{b}\cdot \vec{n}=0\],\[\vec{a}\,\cdot \vec{n}=q\] |
| D. | \[\vec{b}\,\cdot \vec{n}\ne 0\],\[\vec{a}\,\cdot \vec{n}=q\] |
| Answer» D. \[\vec{b}\,\cdot \vec{n}\ne 0\],\[\vec{a}\,\cdot \vec{n}=q\] | |
| 2825. |
The radius of the circle in which the sphere \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2z-2y-4z-19=0\] is cut by the plane \[x+2y+2z+7=0\]is |
| A. | 2 |
| B. | 3 |
| C. | 4 |
| D. | 1 |
| Answer» C. 4 | |
| 2826. |
The centre of the circle given by\[\vec{r}\cdot (\hat{i}+2\hat{j}+2\hat{k})=15\] and \[\left| \vec{r}-(\hat{j}+2\hat{k}) \right|=4\]is |
| A. | (0, 1, 2) |
| B. | (1, 3, 4) |
| C. | (-1, 3, 4) |
| D. | none of these |
| Answer» C. (-1, 3, 4) | |
| 2827. |
The length of the perpendicular drawn from (1, 2, 3) to the line\[\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}\]is |
| A. | 4 |
| B. | 5 |
| C. | 6 |
| D. | 7 |
| Answer» E. | |
| 2828. |
For the line\[\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}\], which of the following is incorrect? |
| A. | It lines in the plane \[x-2y+z=0\] |
| B. | It is same as line\[\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\]. |
| C. | It passes through (2, 3, 5). |
| D. | It is parallel of the plane \[x-2y+z-6=0\] |
| Answer» D. It is parallel of the plane \[x-2y+z-6=0\] | |
| 2829. |
If the straight lines \[2x+3y-1=0,\text{ }x+2y-1=0,~\text{ }x+2y-1=0,\text{ }and\text{ }ax+by-1=0\] form a triangle with the origin as orthocenter, then (a, b) is given by |
| A. | (6, 4) |
| B. | (-3, 3) |
| C. | (-8, 8) |
| D. | (0, 7) |
| Answer» D. (0, 7) | |
| 2830. |
The line\[\frac{x}{a}+\frac{y}{b}=1\]meets the x-axis at A, the y-axis at B, and the line y=x at C such that the area of \[\Delta AOC\]is twice the area of \[\Delta BOC\]. Then the coordinates of C are |
| A. | \[\left( \frac{b}{3},\frac{b}{3} \right)\] |
| B. | \[\left( \frac{2a}{3},\frac{2a}{3} \right)\] |
| C. | \[\left( \frac{2b}{3},\frac{2b}{3} \right)\] |
| D. | none of these |
| Answer» D. none of these | |
| 2831. |
A line of fixed length 2 units moves so that its ends are on the positive x-axis and that part of the line x+y=0 which lies in the second quadrant. Then the locus of the midpoint of the line has equation |
| A. | \[{{x}^{2}}+5{{y}^{2}}+4xy-1=0\] |
| B. | \[{{x}^{2}}+5{{y}^{2}}+4xy+1=0\] |
| C. | \[{{x}^{2}}+5{{y}^{2}}-4xy-1=0\] |
| D. | \[4{{x}^{2}}+5{{y}^{2}}+4xy+1=0\] |
| Answer» B. \[{{x}^{2}}+5{{y}^{2}}+4xy+1=0\] | |
| 2832. |
If \[u={{a}_{1}}x+{{b}_{1}}y={{c}_{1}}=0\], \[v={{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\]and \[{{a}_{1}}/{{a}_{2}}={{b}_{1}}/{{b}_{2}}={{c}_{1}}/{{c}_{2}}\], then the curve \[u+kv=0\]is |
| A. | the same straight line u |
| B. | different straight line |
| C. | not a straight line |
| D. | none of these |
| Answer» B. different straight line | |
| 2833. |
If each of the points, \[({{x}_{1}},4)\], \[(-2,{{y}_{1}})\]lies on the line joining the points (2, -1) and (5, -3), then the point \[p({{x}_{1}},{{y}_{1}})\]lies on the line |
| A. | \[6(x+y)-25=0\] |
| B. | \[2x+6y+1=0\] |
| C. | \[2x+3y-6=0\] |
| D. | \[6(x+y)+25=0\] |
| Answer» C. \[2x+3y-6=0\] | |
| 2834. |
If \[(a,{{a}^{2}})\]falls inside the angle made by the lines y=\[\frac{x}{2}\], x>0, and \[y=3x,\text{ }x>0,\]then a belongs to |
| A. | \[\left( 0,\frac{1}{2} \right)\] |
| B. | \[\left( 3,\,\infty \right)\] |
| C. | \[\left( \frac{1}{2},3 \right)\] |
| D. | \[\left( -3,-\frac{1}{2} \right)\] |
| Answer» D. \[\left( -3,-\frac{1}{2} \right)\] | |
| 2835. |
The lines y\[y={{m}_{1}}x,\] \[y={{m}_{2}}x,\]and \[y={{m}_{3}}x,\]make equal intercepts on the line\[x+y=1\]. Then |
| A. | \[2(1+{{m}_{1}})(1+{{m}_{3}})=(1+{{m}_{2}})(2+{{m}_{1}}+{{m}_{3}})\] |
| B. | \[(1+{{m}_{1}})(1+{{m}_{3}})=(1+{{m}_{2}})(1+{{m}_{1}}+{{m}_{3}})\] |
| C. | \[(1+{{m}_{1}})(1+{{m}_{2}})=(1+{{m}_{3}})(2+{{m}_{1}}+{{m}_{3}})\] |
| D. | \[2(1+{{m}_{1}})(1+{{m}_{3}})=(1+{{m}_{2}})(1+{{m}_{1}}+{{m}_{3}})\] |
| Answer» B. \[(1+{{m}_{1}})(1+{{m}_{3}})=(1+{{m}_{2}})(1+{{m}_{1}}+{{m}_{3}})\] | |
| 2836. |
The line parallel to the x-axis and passing through the intersection of the lines \[ax+2by+3b=0\]and \[bx-2ay-3a=0,\]where (a, b) \[\ne \](0, 0) is |
| A. | below the x-axis at a distance of 3/2 from it. |
| B. | below the x-axis at a distance of 2/3 from it. |
| C. | above the x-axis at a distance of 2/3 form it. |
| D. | above the x-axis at a distance of 2/3 from it. |
| Answer» B. below the x-axis at a distance of 2/3 from it. | |
| 2837. |
Let A, (2,-3) and B (-2, 1) be the vertices of a triangle ABC. If the centroid of this triangle moves on the line \[2x+3y=1,\] then the locus of the vertex C is the line |
| A. | \[2x+3y=9\] |
| B. | \[2x-3y=7\] |
| C. | \[3x+2y=5\] |
| D. | \[3x-2y=3\] |
| Answer» B. \[2x-3y=7\] | |
| 2838. |
The equation of the straight line passing through the point (4, 3) and making intercepts on the coordinate axes, whose sum is-1, is |
| A. | \[\frac{x}{2}+\frac{y}{3}=-1\] and \[\frac{x}{-2}+\frac{y}{1}=-1\] |
| B. | \[\frac{x}{2}-\frac{y}{3}=-1\] and \[\frac{x}{-2}+\frac{y}{1}=-1\] |
| C. | \[\frac{x}{2}+\frac{y}{3}=1\] and \[\frac{x}{2}+\frac{y}{3}=1\] |
| D. | \[\frac{x}{2}-\frac{y}{3}=1\] and \[\frac{x}{-2}+\frac{y}{1}=1\] |
| Answer» E. | |
| 2839. |
If the equation of the locus of a point equidistant from the points (\[{{a}_{1,}}{{b}_{1}}\]) and (\[{{a}_{2,}}{{b}_{2}}\]) is (\[{{a}_{1,-}}{{a}_{2}}\])x+(\[{{b}_{1,-}}{{b}_{2}}\])\[y+c=0\] then the value of c is |
| A. | \[\frac{1}{2}({{a}_{2}}^{2}+{{b}_{2}}^{2}-{{a}_{1}}^{2}-{{b}_{1}}^{2})\] |
| B. | \[{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{b}_{1}}^{2}-{{b}_{2}}^{2}\] |
| C. | \[\frac{1}{2}({{a}_{1}}^{2}+{{a}_{2}}^{2}-{{b}_{1}}^{2}-{{b}_{2}}^{2})\] |
| D. | \[\sqrt{{{a}_{1}}^{2}+{{b}_{2}}^{2}-{{a}_{2}}^{2}-{{b}_{2}}^{2}}\] |
| Answer» B. \[{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{b}_{1}}^{2}-{{b}_{2}}^{2}\] | |
| 2840. |
Line \[ax+by+p=0\]makes angle \[\pi /4\] with \[xcos\,\alpha +ysin\,\alpha =p,\text{ }p\in {{R}^{+}}\]. if these lines and the line \[x\text{ }sin\,\alpha -y\text{ }cos\,\alpha =0\] are concurrent, then |
| A. | \[{{a}^{2}}+{{b}^{2}}=1\] |
| B. | \[{{a}^{2}}+{{b}^{2}}=2\] |
| C. | \[2({{a}^{2}}+{{b}^{2}})=1\] |
| D. | none of these |
| Answer» C. \[2({{a}^{2}}+{{b}^{2}})=1\] | |
| 2841. |
If the quadrilateral formed by the lines \[ax+by+c=0,\text{ }a'x+b'y+c'=0,\text{ }ax+by+c'=0,\text{ }a'x+b'y+c'=0\]has perpendicular diagonals, then |
| A. | \[{{b}^{2}}+{{c}^{2}}=b{{'}^{2}}+c{{'}^{2}}\] |
| B. | \[{{c}^{2}}+{{a}^{2}}=c{{'}^{2}}+a{{'}^{2}}\] |
| C. | \[{{a}^{2}}+{{b}^{2}}=a{{'}^{2}}+b{{'}^{2}}\] |
| D. | none of these |
| Answer» D. none of these | |
| 2842. |
A light ray coming along the line \[3x+4y=5\] gets reflected from the line \[ax+by=1\]and goes along the line\[5x-12y=10\]. Then |
| A. | \[a=64/115,\text{ }b=112/15\] |
| B. | \[a=14/15,\text{ }b=-8/115\] |
| C. | \[a=64/115,\text{ }b=-8/115\] |
| D. | \[a=64/15,\text{ }b=14/15\] |
| Answer» D. \[a=64/15,\text{ }b=14/15\] | |
| 2843. |
The foot of the perpendicular on the line 3x+y=\[\lambda \]drawn from the origin is C. if the line cuts the x-and the y-axis at A and B, respectively, then BC:CA is |
| A. | 1 : 3 |
| B. | 0.125694444444444 |
| C. | 1 : 3 |
| D. | 0.375694444444444 |
| Answer» E. | |
| 2844. |
The straight line \[ax+by+c=0\], where \[abc\ne 0\], will pass through the first quadrant if |
| A. | \[ac>0,bc>0\] |
| B. | \[c>0\,and\,bc<0\] |
| C. | \[bc>0\,and/or\,ac>0\] |
| D. | \[ac<0\,and/or\,bc<0\] |
| Answer» E. | |
| 2845. |
If each observation of a raw data whose variance is \[\sigma \]of the new set is |
| A. | \[{{\sigma }^{2}}\] |
| B. | \[{{h}^{2}}{{\sigma }^{2}}\] |
| C. | \[h\,{{\sigma }^{2}}\] |
| D. | \[h+{{\sigma }^{2}}\] |
| Answer» C. \[h\,{{\sigma }^{2}}\] | |
| 2846. |
In a moderately skewed distribution, the values of mean and median are 5 and 6, respectively. The value of mode in such a situation is approximately equal to |
| A. | 8 |
| B. | 11 |
| C. | 6 |
| D. | None of these |
| Answer» B. 11 | |
| 2847. |
Following are the marks obtained by 9 students in a mathematics test: 50, 69, 20, 33, 39, 40, 65, 59 the mean deviation from the median is |
| A. | 9 |
| B. | 10.5 |
| C. | 12.67 |
| D. | 14.76 |
| Answer» D. 14.76 | |
| 2848. |
Runs scored by a batsman in 10 innings are: 38, 70, 48, 34, 42, 55, 63, 46, 54, 44 the mean deviation is |
| A. | 8.6 |
| B. | 6.4 |
| C. | 10.6 |
| D. | 9.6 |
| Answer» B. 6.4 | |
| 2849. |
The harmonic mean of 4, 8, 16 is |
| A. | 6.4 |
| B. | 6.7 |
| C. | 6.85 |
| D. | 7.8 |
| Answer» D. 7.8 | |
| 2850. |
Computer the medium form the following table Marks obtained No. of students 0-10 2 10-20 18 20-30 30 30-40 45 40-50 35 50-60 20 60-70 6 70-80 3 |
| A. | 36.55 |
| B. | 35.55 |
| C. | 6.85 |
| D. | None of these |
| Answer» B. 35.55 | |