Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

2751.

If the position vectors of A and B are \[\mathbf{i}+3\mathbf{j}-7\mathbf{k}\] and \[5\mathbf{i}-2\mathbf{j}+4\mathbf{k},\] then the direction cosine of \[\overrightarrow{AB}\] along y-axis is                                                                                                  [MNR 1989]

A. \[\frac{4}{\sqrt{162}}\]       
B. \[-\frac{5}{\sqrt{162}}\]
C. 5             
D. 11
Answer» C. 5             
2752.

If the position vectors of the vertices of a triangle be \[2\mathbf{i}+4\mathbf{j}-\mathbf{k},\] \[4\mathbf{i}+5\mathbf{j}+\mathbf{k}\] and \[3\mathbf{i}+6\mathbf{j}-3\mathbf{k},\] then the triangle is                                                                                                                           [UPSEAT 2004]

A. Right angled          
B. Isosceles
C. Equilateral             
D. Right angled isosceles
Answer» E.
2753.

A force is a

A. Unit vector            
B. Localised vector
C. Zero vector            
D. Free vector
Answer» C. Zero vector            
2754.

The position vectors of P and Q are \[5\mathbf{i}+4\mathbf{j}+a\mathbf{k}\] and \[-\mathbf{i}+2\mathbf{j}-2\mathbf{k}\] respectively. If the distance between them is 7, then the value of a will be

A. 5, 1
B. 5, 1
C. 0, 5        
D. 1, 0
Answer» B. 5, 1
2755.

A unit vector a makes an angle \[\frac{\pi }{4}\] with z-axis. If \[\mathbf{a}+\mathbf{i}+\mathbf{j}\] is a unit vector, then a is equal to                                 [IIT 1988]

A. \[\frac{\mathbf{i}}{2}+\frac{\mathbf{j}}{2}+\frac{\mathbf{k}}{\sqrt{2}}\]             
B. \[\frac{\mathbf{i}}{2}+\frac{\mathbf{j}}{2}-\frac{\mathbf{k}}{\sqrt{2}}\]
C. \[-\frac{\mathbf{i}}{2}-\frac{\mathbf{j}}{2}+\frac{\mathbf{k}}{\sqrt{2}}\]              
D. None of these
Answer» D. None of these
2756.

The direction cosines of the resultant of the vectors \[(\mathbf{i}+\mathbf{j}+\mathbf{k}),\] \[(-\mathbf{i}+\mathbf{j}+\mathbf{k}),\] \[(\mathbf{i}-\mathbf{j}+\mathbf{k})\] and \[(\mathbf{i}+\mathbf{j}-\mathbf{k}),\] are

A. \[\left( \frac{1}{\sqrt{2}},\,\,\frac{1}{\sqrt{3}},\,\,\frac{1}{\sqrt{6}} \right)\]
B. \[\left( \frac{1}{\sqrt{6}},\,\,\frac{1}{\sqrt{6}},\,\,\frac{1}{\sqrt{6}} \right)\]
C. \[\left( -\frac{1}{\sqrt{6}},\,\,-\frac{1}{\sqrt{6}},\,-\,\frac{1}{\sqrt{6}} \right)\]            
D. \[\left( \frac{1}{\sqrt{3}},\,\,\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}} \right)\]
Answer» E.
2757.

The system of vectors \[\mathbf{i},\,\,\mathbf{j},\,\,\mathbf{k}\] is

A. Orthogonal           
B. Coplanar
C. Collinear
D. None of these
Answer» B. Coplanar
2758.

The value of k for which the vectors \[\mathbf{a}=\mathbf{i}-\mathbf{j}\] and \[\mathbf{b}=-2\,\mathbf{i}+k\,\mathbf{j}\] are collinear is                                 [Pb. CET 2004]

A. 2
B. \[\frac{1}{2}\]
C.             \[\frac{1}{3}\]       
D. 3
Answer» B. \[\frac{1}{2}\]
2759.

If a, b, c are three non-coplanar vectors such that \[\mathbf{a}+\mathbf{b}+\mathbf{c}=\alpha \,\mathbf{d}\] and \[\mathbf{b}+\mathbf{c}+\mathbf{d}=\beta \,\mathbf{a},\] then \[\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}\] is equal to

A. 0
B.                 \[\alpha \text{ }\mathbf{a}\]
C. \[\beta \text{ }\mathbf{b}\]  
D. \[(\alpha +\beta )\,\mathbf{c}\]
Answer» B.                 \[\alpha \text{ }\mathbf{a}\]
2760.

The magnitudes of mutually perpendicular forces a, b and c are 2, 10 and 11 respectively. Then the magnitude of its resultant is                                                                                                     [IIT 1984]

A. 12          
B. 15
C. 9             
D. None
Answer» C. 9             
2761.

a and b are two non-collinear vectors, then \[x\mathbf{a}+y\mathbf{b}\] (where x and y are scalars) represents a vector which is                                                                                     [MP PET 2003]

A. Parallel to b        
B. Parallel to a
C. Coplanar with a and b        
D. None of these       
Answer» D. None of these       
2762.

If three points A, B and C have position vectors \[(1,\,x,\,3),\,\,(3,\,4,\,7)\] and \[ap+bq+cr=1\] respectively and if they are collinear, then \[(x,\,y)=\]                                                                                              [EAMCET 2002]

A. (2, ? 3)
B. (? 2, 3)
C. (2, 3)      
D. (? 2, ? 3)
Answer» B. (? 2, 3)
2763.

If three points A, B, C are collinear, whose position vectors are \[\mathbf{i}-2\mathbf{j}-8\mathbf{k},\,\,5\mathbf{i}-2\mathbf{k}\] and \[11\,\mathbf{i}+\,3\,\mathbf{j}+7\mathbf{k}\] respectively, then the ratio in which B divides AC is                                                                      [RPET 1999]

A. 1 : 2       
B. 0.0854166666666667
C. 2 : 1       
D. 0.0423611111111111
Answer» C. 2 : 1       
2764.

The position vectors of four points P, Q, R, S are \[2\mathbf{a}+4\mathbf{c},\,\] \[5\mathbf{a}+3\sqrt{3}\,\mathbf{b}+4\mathbf{c},\] \[-2\sqrt{3}\mathbf{b}+\mathbf{c}\] and \[2\mathbf{a}+\mathbf{c}\] respectively,  then                                                                                                            [MP PET 1997]

A. \[\overrightarrow{PQ}\] is parallel to \[\overrightarrow{RS}\]
B. \[\overrightarrow{PQ}\] is not parallel to \[\overrightarrow{RS}\]
C. \[\overrightarrow{PQ}\] is equal to \[\overrightarrow{RS}\]
D. \[\overrightarrow{PQ}\] is parallel and equal to \[\overrightarrow{RS}\]
Answer» B. \[\overrightarrow{PQ}\] is not parallel to \[\overrightarrow{RS}\]
2765.

If \[\mathbf{a}=(1,\,\,-1)\] and \[\mathbf{b}=(-\,2,\,m)\] are two collinear vectors, then m=                                                     [MP PET 1998]

A. 4             
B. 3
C. 2
D. 0
Answer» D. 0
2766.

If a and b are two non-collinear vectors and \[x\,\mathbf{a}+y\,\mathbf{b}=0\]                                                                        [RPET 2001]

A.                 \[x=0\], but y is not necessarily zero
B.                 \[y=0\], but x is not necessarily zero
C.             \[x=0\], \[y=0\]
D. None of these
Answer» D. None of these
2767.

sThe vectors \[\mathbf{i}+2\mathbf{j}+3\mathbf{k},\] \[\lambda \mathbf{i}+4\mathbf{j}+7\mathbf{k},\] \[-3\mathbf{i}-2\mathbf{j}-5\mathbf{k}\] are collinear, if l equals               [Kurukshetra CEE 1996]

A. 3             
B. 4
C. 5             
D. 6
Answer» B. 4
2768.

If a, b, c are the position vectors of three collinear points, then the existence of x, y, z is such that

A. \[x\mathbf{a}+y\mathbf{b}+z\mathbf{c}=0,\,\,x+y+z\ne 0\]
B. \[x\mathbf{a}+y\mathbf{b}+z\mathbf{c}\ne 0,\,\,x+y+z=0\]
C. \[x\mathbf{a}+y\mathbf{b}+z\mathbf{c}\ne 0,\,\,x+y+z\ne 0\]
D. \[x\mathbf{a}+y\mathbf{b}+z\mathbf{c}=0,\,\,x+y+z=0\]
Answer» E.
2769.

The perimeter of the triangle whose vertices have the position vectors \[(\mathbf{i}+\mathbf{j}+\mathbf{k}),\,\,(5\mathbf{i}+3\mathbf{j}-3\mathbf{k})\] and \[(2\mathbf{i}+5\mathbf{j}+9\mathbf{k}),\] is given by                                                                                                              [MP PET 1993]

A. \[15+\sqrt{157}\]
B. \[15-\sqrt{157}\]
C. \[\sqrt{15}-\sqrt{157}\]       
D. \[\sqrt{15}+\sqrt{157}\]
Answer» B. \[15-\sqrt{157}\]
2770.

If \[\mathbf{a}=(2,\,\,5)\] and \[\mathbf{b}=(1,\,\,4),\] then the vector parallel to \[(\mathbf{a}+\mathbf{b})\] is

A. (3, 5)      
B. (1, 1)
C. (1, 3)
D. (8, 5)
Answer» D. (8, 5)
2771.

The vectors a, b and a + b are

A. Collinear
B. Coplanar
C. Non-coplanar       
D. None of these
Answer» C. Non-coplanar       
2772.

If the position vectors of A, B, C, D are \[2\,\mathbf{i}+\mathbf{j},\] \[\mathbf{i}-3\,\mathbf{j},\] \[3\,\mathbf{i}+2\,\mathbf{j}\] and \[\mathbf{i}+\lambda \mathbf{j}\] respectively and \[\overrightarrow{AB}||\overrightarrow{CD}\] , then \[\lambda \] will be                                                                                                                           [RPET 1988]

A. 8             
B. 6
C. 8             
D. 6
Answer» C. 8             
2773.

 If \[(x,\,\,y,\,\,z)\ne (0,\,\,0,\,\,0)\] and \[(\mathbf{i}+\mathbf{j}+3\,\mathbf{k})\,x+(3\,\mathbf{i}-3\mathbf{j}+\mathbf{k})\,y\]\[+(-4\mathbf{i}+5\mathbf{j})\,z=\lambda \,(x\mathbf{i}+y\mathbf{j}+z\mathbf{k}),\] then the value of l will be                                                                                                                    [IIT 1982; RPET 1984]

A. 2, 0        
B. 0, ? 2
C. 1, 0        
D. 0, ? 1
Answer» E.
2774.

If the vectors \[3\,\mathbf{i}+2\,\mathbf{j}-\mathbf{k}\]and \[6\,\mathbf{i}-4x\mathbf{j}+y\mathbf{k}\] are parallel, then the value of x and y will be          [RPET 1985, 86]

A. 1, ? 2
B. 1, ? 2
C. 1, 2        
D. 1, 2
Answer» B. 1, ? 2
2775.

Three points whose position vectors are \[\mathbf{a}+\mathbf{b},\,\,\mathbf{a}-\mathbf{b}\] and \[\mathbf{a}+k\mathbf{b}\] will be collinear, if the value of k is                  [IIT 1984]

A. Zero       
B. Only negative real number
C. Only positive real number
D. Every real number
Answer» E.
2776.

The points with position vectors \[10\,\mathbf{i}+3\,\mathbf{j},\,\,12\,\mathbf{i}-5\,\mathbf{j}\] and \[a\,\mathbf{i}+11\,\mathbf{j}\] are collinear, if \[a=\]                                                             [MNR 1992; Kurukshetra CEE 2002]

A. 8             
B. 4
C. 8
D. 12
Answer» D. 12
2777.

If O be the origin and the position vector of A be \[4\,\mathbf{i}+5\,\mathbf{j},\] then a unit vector parallel to \[\overrightarrow{OA}\] is

A. \[\frac{4}{\sqrt{41}}\mathbf{i}\]       
B. \[\frac{5}{\sqrt{41}}\mathbf{i}\]
C. \[\frac{1}{\sqrt{41}}(4\,\mathbf{i}+5\,\mathbf{j})\]
D. \[\frac{1}{\sqrt{41}}(4\,\mathbf{i}-5\,\mathbf{j})\]
Answer» D. \[\frac{1}{\sqrt{41}}(4\,\mathbf{i}-5\,\mathbf{j})\]
2778.

The perimeter of a triangle with sides \[3\mathbf{i}+4\mathbf{j}+5\mathbf{k},\,\] \[4\mathbf{i}-3\mathbf{j}-5\mathbf{k}\] and \[7\mathbf{i}+\mathbf{j}\] is                                                [MP PET 1991]

A. \[\sqrt{450}\]
B. \[\sqrt{150}\]
C. \[\sqrt{50}\]          
D. \[\sqrt{200}\]
Answer» B. \[\sqrt{150}\]
2779.

If the position vectors of the vertices of a triangle be \[6\mathbf{i}+4\mathbf{j}+5\mathbf{k},\,\,\,4\mathbf{i}+5\mathbf{j}+6\mathbf{k}\] and \[5\mathbf{i}+6\mathbf{j}+4\mathbf{k},\] then the triangle is

A. Right angled         
B. Isosceles
C. Equilateral             
D. None of these
Answer» D. None of these
2780.

If \[4\hat{i}+7\hat{j}+8\hat{k},\,\,2\hat{i}+3\hat{j}+4\hat{k}\] and \[2\hat{i}+5\hat{j}+7\hat{k}\] are the position vectors of the vertices A, B and C, respectively, of triangle ABC, then the position vector of the point where the bisector of angle A meets BC is

A. \[\frac{2}{3}(-6\hat{i}-8\hat{j}-6\hat{k})\]
B. \[\frac{2}{3}(6\hat{i}+8\hat{j}+6\hat{k})\]
C. \[\frac{1}{3}(6\hat{i}+8\hat{j}\,+18\hat{k})\]
D. \[\frac{1}{3}(5\hat{j}+12\hat{k})\]
Answer» D. \[\frac{1}{3}(5\hat{j}+12\hat{k})\]
2781.

Find the value of \[\lambda \] so that the points P, Q, R and S on the sides OA, OB, OC and AB, respectively, of a regular tetrahedron OABC are coplanar. It is given that \[\frac{OP}{OA}=\frac{1}{3},\frac{OQ}{OB}=\frac{1}{2},\frac{QR}{OC}=\frac{1}{3}\] and\[\frac{OS}{AB}=\lambda \].

A. \[\lambda =\frac{1}{2}\]           
B. \[\lambda =-1\]
C. \[\lambda =0\]  
D. for no value of \[\lambda \]
Answer» C. \[\lambda =0\]  
2782.

If the vectors \[\vec{a}\] and \[\vec{b}\] are linearly independent satisfying\[(\sqrt{3}tan\theta +1)\vec{a}+(\sqrt{3}sec\theta -2)\vec{b}\]=0, then the most general values of \[\theta \] are

A. \[n\pi -\frac{\pi }{6},n\in z\]
B. \[2n\pi \pm \frac{11\pi }{6},n\in z\]
C. \[n\pi \pm \frac{\pi }{6},n\in z\]  
D. \[2n\pi +\frac{11\pi }{6},n\in z\]
Answer» E.
2783.

If \[\vec{a}\] and \[\vec{b}\] are two unit vectors and \[\theta \] is the angle between them, then the unit vector along the angular bisector of \[\vec{a}\] and \[\vec{b}\] will be given by

A. \[\frac{\vec{a}-\vec{b}}{2\cos (\theta /2)}\]
B. \[\frac{\vec{a}+\vec{b}}{2\cos (\theta /2)}\]
C. \[\frac{\vec{a}-\vec{b}}{\cos (\theta /2)}\]
D. none of these
Answer» C. \[\frac{\vec{a}-\vec{b}}{\cos (\theta /2)}\]
2784.

Given three vectors \[\vec{a}=6\hat{i}-3\hat{j},\hat{b}=2\hat{i}-6\hat{j}\] and \[\vec{c}=-2\hat{i}+21\hat{j}\] such that \[\overrightarrow{\alpha }=\vec{a}+\vec{b}+\vec{c}\]. Then the resolution of the vector \[\overrightarrow{\alpha }\] into components with respect to \[\vec{a}\] and \[\vec{b}\] is given by

A. \[3\vec{a}-2\vec{b}\]
B. \[3\vec{b}\]\[-\]\[2\vec{a}\]
C. \[2\vec{a}-3\vec{b}\]
D. \[\vec{a}-2\vec{b}\]
Answer» D. \[\vec{a}-2\vec{b}\]
2785.

If \[3\lambda \vec{c}+2\mu (\vec{a}\times \vec{b})=0\], then

A. \[3\lambda +2\mu =0\] 
B. \[3\lambda =2\mu \]
C. \[\lambda =\mu \]         
D. \[\lambda +\mu =0\]
Answer» C. \[\lambda =\mu \]         
2786.

If vectors \[\overrightarrow{AB}=-3\hat{i}+4\hat{k}\] and \[\overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}\] are the sides of a \[\Delta \]ABC, then the length of the median through A is

A. \[\sqrt{14}\]      
B. \[\sqrt{18}\]
C. \[\sqrt{29}\]      
D. 5
Answer» C. \[\sqrt{29}\]      
2787.

Let the position vectors of the points P and Q be \[4\hat{i}+\hat{j}+\lambda \hat{k}\] and \[2\hat{i}-\hat{j}+\lambda \hat{k}\], respectively. Vector \[\hat{i}-\hat{j}+6\hat{k}\]is perpendicular to the plane containing the origin and the point?s P and Q. then\[\lambda \]equals

A. \[-\,1/2\]
B. 44228
C. 1                     
D. none of these
Answer» B. 44228
2788.

Vectors \[3\vec{a}-5\vec{b}\] and \[2\vec{a}+\vec{b}\] are mutually perpendicular. If \[\vec{a}+4\vec{b}\] and \[\vec{b}-\vec{a}\] are also mutually perpendicular, then the cosine of the angle between \[\vec{a}\] and \[\vec{b}\] is

A. \[\frac{19}{5\sqrt{43}}\]
B. \[\frac{19}{3\sqrt{43}}\]
C. \[\frac{19}{2\sqrt{45}}\]
D. \[\frac{19}{6\sqrt{43}}\]
Answer» B. \[\frac{19}{3\sqrt{43}}\]
2789.

Let \[\vec{a}\cdot \vec{b}=0\] where \[\vec{a}\] and \[\vec{b}\] are unit vectors and the unit vector \[\vec{c}\] is inclined at an angle \[\theta \] to both \[\vec{a}\] and \[\vec{b}\]. If \[\vec{c}=m\vec{a}+n\vec{b}+p(\vec{a}\times \vec{b}),(m,n,p\in R)\], then

A. \[-\frac{\pi }{4}\le \theta \le \frac{\pi }{4}\]          
B. \[\frac{\pi }{4}\le \theta \le \frac{3\pi }{4}\]
C. \[0\le \theta \le \frac{\pi }{4}\]    
D. \[0\le \theta \le \frac{3\pi }{4}\]
Answer» C. \[0\le \theta \le \frac{\pi }{4}\]    
2790.

Let \[\vec{a}=\hat{i}+\hat{j};\hat{b}=2\hat{i}-\hat{k}\]. Then vector \[\vec{r}\] satisfying the equations \[\vec{r}\times \vec{a}=\vec{b}\times \vec{a}\]and \[\vec{r}\times \vec{b}=\vec{a}\times \vec{b}\] is

A. \[\hat{i}-\hat{j}+\hat{k}\]         
B. \[3\hat{i}-\hat{j}+\hat{k}\]
C. \[3\hat{i}+\hat{j}-\hat{k}\]        
D. \[\hat{i}-\hat{j}-\hat{k}\]
Answer» D. \[\hat{i}-\hat{j}-\hat{k}\]
2791.

If \[\hat{a},\] \[\hat{b}\] and \[\hat{c}\] are three unit vectors, such that \[\hat{a}+\hat{b}+\hat{c}\] is also a unit vector and \[{{\theta }_{1}}\], \[{{\theta }_{2}}\] and \[{{\theta }_{3}}\] are angles between the vectors \[\hat{a}\], \[\hat{b}\]; \[\hat{b}\], \[\hat{c}\] and \[\hat{c}\], \[\hat{a}\], respectively, then among \[\theta _{1}^{{}}\],\[\theta _{2}^{{}}\]and \[\theta _{3}^{{}}\]

A. all are acute angles
B. all are right angles
C. at least one is obtuse angle
D. none of these
Answer» D. none of these
2792.

A uni-modular tangent vector on the curve \[x={{t}^{2}}+2\], \[y=4t-5\], \[z=2{{t}^{2}}-6t\] at t=2 is

A. \[\frac{1}{3}(2\hat{i}+2\hat{j}+\hat{k})\]
B. \[\frac{1}{3}(\hat{i}-\hat{j}-\hat{k})\]
C. \[\frac{1}{6}(2\hat{i}+\hat{j}+\hat{k})\]           
D. \[\frac{2}{3}(\hat{i}+\hat{j}+\hat{k})\]
Answer» B. \[\frac{1}{3}(\hat{i}-\hat{j}-\hat{k})\]
2793.

Let \[\vec{a}\], \[\vec{b}\] and \[\vec{c}\] be the three vectors having magnitudes 1, 5 and 3, respectively, such that the angle between \[\vec{a}\] and \[\vec{b}\] is \[\theta \] and \[\vec{a}\times (\vec{a}\times \vec{b})=\vec{c}\]  Then tan \[\theta \] is equal to

A. 0                     
B. 44257
C. 3/5                   
D. ¾
Answer» E.
2794.

The value of expression \[\frac{2(sin{{1}^{o}}+sin{{2}^{o}}+sin{{3}^{o}}+\cdot \cdot \cdot \cdot +\sin {{89}^{o}})}{2(cos{{1}^{o}}+cos{{2}^{o}}+\cdot \cdot \cdot +cos{{44}^{o}})+1}\]Equals

A. \[\sqrt{2}\]                    
B. \[1/\sqrt{2}\]
C. \[1/2\]               
D. 0
Answer» B. \[1/\sqrt{2}\]
2795.

If \[\alpha =\frac{\pi }{14}\],then the value of (\[\tan \alpha \tan 2\alpha +\tan 2\alpha \tan 4\alpha +\tan 4\alpha \tan \alpha \])is

A. 1                     
B. 44228
C. 2                                 
D. 44256
Answer» B. 44228
2796.

\[\frac{\sqrt{2}-\sin \alpha -\cos \alpha }{\sin \alpha -\cos \alpha }\]is equal to

A. \[\sec \left( \frac{\alpha }{2}-\frac{\pi }{8} \right)\]
B. \[\cos \left( \frac{\pi }{8}-\frac{\alpha }{2} \right)\]
C. \[\tan \left( \frac{\alpha }{2}-\frac{\pi }{8} \right)\]           
D. \[\cot \left( \frac{\alpha }{2}-\frac{\pi }{2} \right)\]
Answer» D. \[\cot \left( \frac{\alpha }{2}-\frac{\pi }{2} \right)\]
2797.

If\[\cos \alpha +\cos \beta =0=sin\alpha +sin\beta ,\]then \[\cos 2\alpha +\cos 2\beta \]is equal to

A. \[-2\sin (\alpha +\beta )\]
B. \[-2\cos (\alpha +\beta )\]
C. \[2\sin (\alpha +\beta )\] 
D. \[2\cos (\alpha +\beta )\]
Answer» C. \[2\sin (\alpha +\beta )\] 
2798.

If \[y=(1+tan\,A)(1-tan\,B),\]where A-B=\[\frac{\pi }{4}\], then \[{{(y+1)}^{y+1}}\]is equal to

A. 9                     
B. 4
C. 27                    
D. 81
Answer» D. 81
2799.

If A, B, C are angles of a triangle, then 2sin  \[\frac{A}{2}\cos ec\,\frac{B}{2}\sin \frac{C}{2}-\sin A\cot \frac{B}{2}-\cos A\]is

A. independent of A, B,
B. function of A, B
C. function of C
D.  none of these
Answer» B. function of A, B
2800.

If \[{{\tan }^{2}}\frac{\pi -A}{4}+{{\tan }^{2}}\frac{\pi -B}{4}+{{\tan }^{2}}\frac{\pi -C}{4}=1,then\text{ }\Delta ABC\,\,is\]

A. equilateral         
B. isosceles
C. scalene 
D. none of these
Answer» B. isosceles