Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

2351.

A point moves in such a way that the sum of its distance from xy-plane and yz-plane remains equal to its distance from zx-plane. The locus of the point is

A.            \[x-y+z=2\]
B.            \[x+y-z=0\]
C.            \[x-y+z=0\]
D.            \[x-y-z=2\]
Answer» D.            \[x-y-z=2\]
2352.

The equation of the plane containing the line of intersection of the planes \[2x-y=0\]and \[y-3z=0\]and perpendicular to the plane \[4x+5y-3z-8=0\]is

A.            \[28x-17y+9z=0\]
B.            \[28x+17y+9z=0\]
C.            \[28x-17y+9x=0\]
D.            \[7x-3y+z=0\]
Answer» B.            \[28x+17y+9z=0\]
2353.

Distance of the point (2,3,4) from the plane \[3x-6y+2z+11=0\]is [MP PET 1990, 96]

A.            1
B.            2
C.            3
D.            0
Answer» B.            2
2354.

If the product of distances of the point (1, 1, 1) from the origin and the plane \[x-y+z+k=0\] be 5, then  k =

A.            ? 2
B.            ?3
C.            4
D.            7
Answer» D.            7
2355.

The period of \[{{\sin }^{4}}x+{{\cos }^{4}}x\]is       [RPET 1997]

A. \[\pi /2\]
B. \[\pi \]
C. \[2\pi \]
D. \[3\pi /2\]
Answer» B. \[\pi \]
2356.

Period of \[|2\sin 3\theta +4\cos 3\theta |\]is

A. \[\frac{2\pi }{3}\]
B. \[\pi \]
C. \[\frac{\pi }{2}\]
D. \[\frac{\pi }{3}\]
Answer» E.
2357.

Period of cot \[3x-\cos (4x+3)\]is

A. \[\frac{\pi }{3}\]
B. \[\frac{\pi }{4}\]
C. \[\pi \]
D. \[2\pi \]
Answer» D. \[2\pi \]
2358.

Period of \[\sin \theta -\sqrt{3}\cos \theta \]is  [MP PET 1990]

A. \[\frac{\pi }{4}\]
B. \[\frac{\pi }{2}\]
C. \[\pi \]
D. \[2\pi \]
Answer» E.
2359.

Period of \[\frac{\sin \theta +\sin 2\theta }{\cos \theta +\cos 2\theta }\]is

A. \[2\pi \]
B. \[\pi \]
C. \[\frac{2\pi }{3}\]
D. \[\frac{\pi }{3}\]
Answer» D. \[\frac{\pi }{3}\]
2360.

The period of \[f(x)=\sin \left( \frac{\pi x}{n-1} \right)+\cos \,\left( \frac{\pi x}{n} \right)\,\,,\,n\in Z\], \[n>2\] is [Orissa JEE 2002]

A. \[2\pi n(n-1)\]
B. \[4n\,(n-1)\]
C. \[2n\,(n-1)\]
D. None of these
Answer» D. None of these
2361.

Period of \[\sin \theta \cos \theta \]is

A. \[\frac{\pi }{2}\]
B. \[\pi \]
C. \[2\pi \]
D. None of these
Answer» C. \[2\pi \]
2362.

The function \[f(x)=\sin \frac{\pi x}{2}+2\cos \frac{\pi x}{3}-\tan \frac{\pi x}{4}\] is period with period  [EAMCET 1992; RPET 2001]

A. 6
B. 3
C. 4
D. 12
Answer» E.
2363.

The period of the function \[\sin \left( \frac{\pi x}{2} \right)+\cos \left( \frac{\pi x}{2} \right)\] is  [EAMCET 1990]

A. 4
B. 6
C. 12
D. 24
Answer» B. 6
2364.

Let \[f(x)=\cos px+\sin x\] be periodic, then p must be

A. Rational
B. Irrational
C. Positive real number
D. None of these
Answer» B. Irrational
2365.

The period of the function \[\sin \left( \frac{2x}{3} \right)+\sin \left( \frac{3x}{2} \right)\]is  [Orissa JEE 2004]

A. \[2\pi \]
B. \[10\pi \]
C. \[6\pi \]
D. \[12\pi \]
Answer» E.
2366.

Which of the following functions has period \[2\pi \]  [Pb. CET 2004]

A. \[y=\sin \left( 2\pi t+\frac{\pi }{3} \right)+\]\[2\sin \left( 3\pi t+\frac{\pi }{4} \right)+3\sin 5\pi t\]
B. \[y=\sin \frac{\pi }{3}t+\sin \frac{\pi }{4}t\]
C. \[y=\sin t+\cos 2t\]
D. None of these
Answer» D. None of these
2367.

The period of the function \[y=\sin 2x\]is  [Kerala (Engg.) 2002]

A. \[2\pi \]
B. \[\pi \]
C. \[\pi /2\]
D. \[4\pi \]
Answer» C. \[\pi /2\]
2368.

Period of \[{{\sin }^{2}}x\]is [UPSEAT 2002; AIEEE 2002]

A. \[\pi \]
B. \[2\pi \]
C. \[\frac{\pi }{2}\]
D. None of these\[\]
Answer» B. \[2\pi \]
2369.

If the period of the function \[f(x)=\sin \left( \frac{x}{n} \right)\]is \[4\pi \], then n is equal to [Pb. CET 2000]

A. 1
B. 4
C. 8
D. 2
Answer» E.
2370.

The period of the function \[f(\theta )=\sin \frac{\theta }{3}+\cos \frac{\theta }{2}\]is [EAMCET 2001]

A. \[3\pi \]
B. \[6\pi \]
C. \[9\pi \]
D. \[12\pi \]
Answer» E.
2371.

If \[u=\log ({{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz)\], then \[\left( \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z} \right)\] \[(x+y+z)\] =                                        [EAMCET 1996]

A.            0
B.            1
C.            2
D.            3
Answer» E.
2372.

If \[u={{\tan }^{-1}}\left( \frac{{{x}^{3}}+{{y}^{3}}}{x-y} \right)\], then \[x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=\]                                                                                                                [EAMCET 1999]

A.            \[\sin 2u\]
B.            \[\cos 2u\]
C.            \[\tan 2u\]
D.            \[\sec 2u\]
Answer» B.            \[\cos 2u\]
2373.

If \[u={{\tan }^{-1}}\frac{y}{x}\], then by Euler?s Theorem the value of x \[\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=\]                                           [Tamilnadu (Engg.) 1993]

A.            \[\tan u\]
B.            \[\sin u\]
C.            \[0\]
D.            \[\cos 2u\]
Answer» D.            \[\cos 2u\]
2374.

If \[u={{\sin }^{-1}}\left( \frac{y}{x} \right),\] then \[\frac{\partial u}{\partial x}\] is equal to [Tamilnadu (Engg.) 1992]

A.            \[-\frac{y}{{{x}^{2}}+{{y}^{2}}}\]
B.            \[\frac{x}{\sqrt{1-{{y}^{2}}}}\]
C.            \[\frac{-y}{\sqrt{{{x}^{2}}-{{y}^{2}}}}\]
D.            \[\frac{-y}{x\sqrt{{{x}^{2}}-{{y}^{2}}}}\]
Answer» E.
2375.

If \[u=\frac{x+y}{x-y}\], then \[\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\]                                         [EAMCET 1991]

A.            \[\frac{1}{x-y}\]
B.            \[\frac{2}{x-y}\]
C.            \[\frac{1}{{{(x-y)}^{2}}}\]
D.            \[\frac{2}{{{(x-y)}^{2}}}\]
Answer» C.            \[\frac{1}{{{(x-y)}^{2}}}\]
2376.

If \[u=\log ({{x}^{2}}+{{y}^{2}}),\] then \[\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}u}{\partial {{y}^{2}}}=\]                                     [EAMCET 1994]

A.            \[\frac{1}{{{x}^{2}}+{{y}^{2}}}\]
B.            0
C.            \[\frac{{{x}^{2}}-{{y}^{2}}}{{{({{x}^{2}}+{{y}^{2}})}^{2}}}\]
D.            \[\frac{{{y}^{2}}-{{x}^{2}}}{{{({{x}^{2}}+{{y}^{2}})}^{2}}}\]
Answer» C.            \[\frac{{{x}^{2}}-{{y}^{2}}}{{{({{x}^{2}}+{{y}^{2}})}^{2}}}\]
2377.

If \[u={{e}^{-{{x}^{2}}-{{y}^{2}}}}\], then                                                              [EAMCET 2001]

A.            \[x{{u}_{x}}=y{{y}_{y}}\]
B.            \[y{{u}_{x}}=x{{u}_{y}}\]
C.            \[y{{u}_{x}}+x{{u}_{y}}=0\]
D.            \[{{x}^{2}}{{u}_{y}}+{{y}^{2}}{{u}_{x}}=0\]
Answer» C.            \[y{{u}_{x}}+x{{u}_{y}}=0\]
2378.

If \[z=\frac{y}{x}\left[ \sin \frac{x}{y}+\cos \left( 1+\frac{y}{x} \right) \right]\], then \[x\frac{\partial z}{\partial x}=\]                                                                                          [EAMCET 2002]

A.            \[y\frac{\partial z}{\partial y}\]
B.            \[-y\frac{\partial z}{\partial y}\]
C.            \[2y\frac{\partial z}{\partial y}\]
D.            \[2y\frac{\partial z}{\partial x}\]
Answer» C.            \[2y\frac{\partial z}{\partial y}\]
2379.

If \[z=\sec \,(y-ax)+\tan (y+ax),\] then \[\frac{{{\partial }^{2}}z}{\partial {{x}^{2}}}-{{a}^{2}}\frac{{{\partial }^{2}}z}{\partial {{y}^{2}}}=\]                    [EAMCET 2002]

A.            z
B.            2z
C.            0
D.            ?z
Answer» D.            ?z
2380.

If \[{{u}^{2}}={{(x-a)}^{2}}+{{(y-b)}^{2}}+{{(z-c)}^{2}}\], then \[\sum \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\]                    [Tamilnadu (Engg.) 2002]

A.            \[\frac{2}{u}\]
B.            \[\frac{3}{u}\]
C.            0
D.            \[\frac{1}{u}\]
Answer» B.            \[\frac{3}{u}\]
2381.

If \[u={{x}^{2}}{{\tan }^{-1}}\frac{y}{x}-{{y}^{2}}{{\tan }^{-1}}\frac{x}{y}\], then \[\frac{{{\partial }^{2}}u}{\partial x\,\partial \,y}=\] [Tamilnadu (Engg.) 2002]

A.            \[\frac{{{x}^{2}}+{{y}^{2}}}{{{x}^{2}}-{{y}^{2}}}\]
B.            \[\frac{{{x}^{2}}-{{y}^{2}}}{{{x}^{2}}+{{y}^{2}}}\]
C.            \[\frac{{{x}^{2}}+{{y}^{2}}}{{{x}^{2}}-{{y}^{2}}}\]
D.            \[-\frac{{{x}^{2}}{{y}^{2}}}{{{x}^{2}}+{{y}^{2}}}\]
Answer» C.            \[\frac{{{x}^{2}}+{{y}^{2}}}{{{x}^{2}}-{{y}^{2}}}\]
2382.

If \[u={{({{x}^{2}}+{{y}^{2}}+{{z}^{2}})}^{3/2}}\], then \[{{\left( \frac{\partial u}{\partial x} \right)}^{2}}+{{\left( \frac{\partial u}{\partial y} \right)}^{2}}+{{\left( \frac{\partial u}{\partial z} \right)}^{2}}=\]                               [EAMCET 1996]

A.            9u
B.            \[9{{u}^{4/3}}\]
C.            \[9{{u}^{2}}\]
D.            \[{{u}^{4/3}}\]
Answer» C.            \[9{{u}^{2}}\]
2383.

If \[u=x{{y}^{2}}{{\tan }^{-1}}\left( \frac{y}{x} \right)\], then \[x{{u}_{x}}+y{{u}_{y}}=\]                 [EAMCET 2001]

A.            2u
B.            u
C.            3u
D.            u/3
Answer» D.            u/3
2384.

If \[u={{\tan }^{-1}}(x+y),\] then \[x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=\]   [EAMCET 1996]

A.            \[\sin 2u\]
B.            \[\frac{1}{2}\sin 2u\]
C.            \[2\tan u\]
D.            \[{{\sec }^{2}}u\]
Answer» C.            \[2\tan u\]
2385.

If \[{{x}^{x}}{{y}^{y}}{{z}^{z}}=c\], then \[\frac{\partial z}{\partial x}=\]                                  [EAMCET 1999]

A.            \[\frac{1+\log x}{1+\log z}\]
B.            \[-\frac{1+\log x}{1+\log z}\]
C.            \[-\frac{1+\log y}{1+\log z}\]
D.            None of these
Answer» C.            \[-\frac{1+\log y}{1+\log z}\]
2386.

If \[u={{\log }_{e}}({{x}^{2}}+{{y}^{2}})+{{\tan }^{-1}}\left( \frac{y}{x} \right)\], then \[\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}u}{\partial {{y}^{2}}}=\]                                                               [EAMCET 2000]

A.            0
B.            2u
C.            1/u
D.            u
Answer» B.            2u
2387.

If \[z=\frac{{{({{x}^{4}}+{{y}^{4}})}^{1/3}}}{{{({{x}^{3}}+{{y}^{3}})}^{1/4}}}\],  then \[x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=\]

A.            \[\frac{1}{12}z\]
B.            \[\frac{1}{4}z\]
C.            \[\frac{1}{3}z\]
D.            \[\frac{7}{12}z\]
Answer» E.
2388.

If \[z={{\sin }^{-1}}\left( \frac{x+y}{\sqrt{x}+\sqrt{y}} \right)\], then \[x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}\] is equal to [EAMCET 1998; Orissa JEE 2000]

A.            \[\frac{1}{2}\sin z\]
B.            \[\frac{1}{2}\tan z\]
C.            \[0\]
D.            None of these
Answer» C.            \[0\]
2389.

If the parabola \[{{y}^{2}}=4ax\] passes through the point (1, ?2), then the tangent at this point is                 [MP PET 1998]

A.            \[x+y-1=0\]                               
B.            \[x-y-1=0\]
C.            \[x+y+1=0\]                               
D.            \[x-y+1=0\]
Answer» D.            \[x-y+1=0\]
2390.

 The line \[y=2x+c\] is tangent to the parabola \[{{y}^{2}}=4x\], then \[c=\]      [MP PET 1996]

A.            \[-\frac{1}{2}\]                         
B.            \[\frac{1}{2}\]
C.            \[\frac{1}{3}\]                           
D.            4
Answer» C.            \[\frac{1}{3}\]                           
2391.

The two parabolas \[{{y}^{2}}=4x\] and \[{{x}^{2}}=4y\] intersect at a point P, whose abscissa is not zero, such that

A.            They both touch each other at P
B.            They cut at right angles at P
C.            The tangents to each curve at P make complementary angles with the x-axis
D.            None of these
Answer» D.            None of these
2392.

If \[{{y}_{1}},\ {{y}_{2}}\] are the ordinates of two points P and Q on the parabola and \[{{y}_{3}}\] is the ordinate of the point of intersection of tangents at P and Q, then

A.            \[{{y}_{1}},\ {{y}_{2}},\ {{y}_{3}}\] are in A.P.                              
B.            \[{{y}_{1}},\ {{y}_{3}},\ {{y}_{2}}\] are in A.P.
C.            \[{{y}_{1}},\ {{y}_{2}},\ {{y}_{3}}\] are in G.P.                             
D.            \[{{y}_{1}},\ {{y}_{3}},\ {{y}_{2}}\] are in G.P.
Answer» C.            \[{{y}_{1}},\ {{y}_{2}},\ {{y}_{3}}\] are in G.P.                             
2393.

The angle between the tangents drawn from the origin to the parabola \[{{y}^{2}}=4a(x-a)\] is      [MNR 1994]

A.            \[{{90}^{o}}\]                            
B.            \[{{30}^{o}}\]
C.            \[{{\tan }^{-1}}\frac{1}{2}\]     
D.            \[{{45}^{o}}\]
Answer» B.            \[{{30}^{o}}\]
2394.

The locus of the point of intersection of the perpendicular tangents to the parabola \[{{x}^{2}}=4ay\]is          [MP PET 1994]

A.            Axis of the parabola                 
B.            Directrix of the parabola
C.            Focal chord of the parabola     
D.            Tangent at vertex to the parabola
Answer» C.            Focal chord of the parabola     
2395.

The line \[y=mx+c\] touches the parabola \[{{x}^{2}}=4ay\], if  [MNR 1973; MP PET 1994, 99]

A.            \[c=-am\]                                  
B.            \[c=-a/m\]
C.            \[c=-a{{m}^{2}}\]                      
D.            \[c=a/{{m}^{2}}\]
Answer» D.            \[c=a/{{m}^{2}}\]
2396.

The angle between the tangents drawn at the end points of the latus rectum of parabola \[{{y}^{2}}=4ax\], is

A.            \[\frac{\pi }{3}\]                       
B.            \[\frac{2\pi }{3}\]
C.            \[\frac{\pi }{4}\]                       
D.            \[\frac{\pi }{2}\]
Answer» E.
2397.

The co-ordinates of the extremities of the latus rectum of the parabola \[5{{y}^{2}}=4x\] are

A.            \[(1/5,\ 2/5),\ (-1/5,\ 2/5)\]    
B.            \[(1/5,\ 2/5),\ (1/5,\ -2/5)\]
C.            \[(1/5,\ 4/5),\ (1/5,\ -4/5)\]    
D.            None of these
Answer» C.            \[(1/5,\ 4/5),\ (1/5,\ -4/5)\]    
2398.

A tangent to the parabola \[{{y}^{2}}=8x\] makes an angle of \[{{45}^{o}}\]with the straight line \[y=3x+5\], then the equation of tangent is

A.            \[2x+y-1=0\]                             
B.            \[x+2y-1=0\]
C.            \[2x+y+1=0\]                             
D.            None of these
Answer» D.            None of these
2399.

If the line \[y=mx+c\] is a tangent to the parabola \[{{y}^{2}}=4a(x+a)\] then \[ma+\frac{a}{m}\] is equal to

A.            c     
B.            2c
C.            ? c  
D.            3c
Answer» B.            2c
2400.

If the straight line \[x+y=1\] touches the parabola \[{{y}^{2}}-y+x=0\], then the co-ordinates of the point of contact are               [RPET 1991]

A.            (1, 1)                                         
B.            \[\left( \frac{1}{2},\ \frac{1}{2} \right)\]
C.            (0, 1)                                         
D.            (1, 0)
Answer» D.            (1, 0)