Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

6351.

If \[\int{\frac{(2{{x}^{2}}+1)\,\,dx}{({{x}^{2}}-4)\,\,({{x}^{2}}-1)}=\log \left[ {{\left( \frac{x+1}{x-1} \right)}^{a}}\,\,{{\left( \frac{x-2}{x+2} \right)}^{b}} \right]}+C,\] then the values of a and b are respectively [Roorkee 2000]

A. 1/2, ¾
B. -1, 3/2
C. 1, 3/2
D. -1/2, ¾
Answer» B. -1, 3/2
6352.

The function \[f(x)\,=\,|x|+|x-1|\] is [RPET 1996; Kurukshetra CEE 2002]

A.            Continuous at \[x=1,\] but not differentiable at \[x=1\]
B.            Both continuous and differentiable at \[x=1\]
C.            Not continuous at \[x=1\]
D.            Not differentiable at \[x=1\]
Answer» B.            Both continuous and differentiable at \[x=1\]
6353.

The point of intersection of \[\mathbf{r}\times \mathbf{a}=\mathbf{b}\times \mathbf{a}\] and \[\mathbf{r}\times \mathbf{b}=\mathbf{a}\times \mathbf{b}\], where \[\mathbf{a}=\mathbf{i}+\mathbf{j}\] and \[\mathbf{b}=2\mathbf{i}-\mathbf{k}\] is [Orissa JEE 2004]

A. \[3\mathbf{i}+\mathbf{j}-\mathbf{k}\]
B. \[3\mathbf{i}-\mathbf{k}\]
C. \[3\mathbf{i}+2\mathbf{j}+\mathbf{k}\]
D. None of these
Answer» B. \[3\mathbf{i}-\mathbf{k}\]
6354.

If \[\int_{{}}^{{}}{\frac{2x+3}{(x-1)({{x}^{2}}+1)}\ dx={{\log }_{e}}\left\{ {{(x-1)}^{\frac{5}{2}}}{{({{x}^{2}}+1)}^{a}} \right\}}-\frac{1}{2}{{\tan }^{-1}}x+A\]  , where A is any arbitrary constant, then the value of ?a? is  [MP PET 1998]

A. 44291
B. -1.66666666666667
C. -0.833333333333333
D. -1.25
Answer» E.
6355.

Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies equation \[\mathbf{p}\times \{(\mathbf{x}-\mathbf{q})\times \mathbf{p}\}+\mathbf{q}\times \{(\mathbf{x}-\mathbf{r})\times \mathbf{q}\}+\mathbf{r}\times \{(\mathbf{x}-\mathbf{p})\times \mathbf{r}\}=0,\] then x is given by [IIT 1997 Cancelled]

A. \[\frac{1}{2}\,(\mathbf{p}+\mathbf{q}-2\mathbf{r})\]         
B. \[\frac{1}{2}(\mathbf{p}+\mathbf{q}+\mathbf{r})\]
C. \[\frac{1}{3}(\mathbf{p}+\mathbf{q}+\mathbf{r})\]
D. \[\frac{1}{3}(2\mathbf{p}+\mathbf{q}-\mathbf{r})\]
Answer» C. \[\frac{1}{3}(\mathbf{p}+\mathbf{q}+\mathbf{r})\]
6356.

\[\int_{{}}^{{}}{\frac{dx}{(\sin x+\sin 2x)}=}\]       [IIT 1984]

A. \[\frac{1}{6}\log (1-\cos x)+\frac{1}{2}\log (1+\cos x)-\frac{2}{3}\log (1+2\cos x)\]        
B. \[6\log (1-\cos x)+2\log (1+\cos x)-\frac{2}{3}\log (1+2\cos x)\]
C. \[6\log (1-\cos x)+\frac{1}{2}\log (1+\cos x)+\frac{2}{3}\log (1+2\cos x)\]       
D. None of these
Answer» B. \[6\log (1-\cos x)+2\log (1+\cos x)-\frac{2}{3}\log (1+2\cos x)\]
6357.

Let \[g(x)=x.\,f(x),\]where \[f(x)=\left\{ \begin{align}   & x\sin \frac{1}{x},\,x\ne 0 \\  & \,\,\,\,\,\,\,\,\,\,\,\,0,\,x=0 \\ \end{align} \right.\] at \[x=0\] [IIT Screening 1994; UPSEAT 2004]

A. g is differentiable but g' is not continuous
B. g is differentiable while f is not      
C. Both f and g are differentiable           
D. g is differentiable and g' is continuous
Answer» B. g is differentiable while f is not      
6358.

Let \[\mathbf{a}=2\mathbf{i}+\mathbf{j}+\mathbf{k},\,\,\mathbf{b}=\mathbf{i}+2\mathbf{j}-\mathbf{k}\]and a unit vector c be coplanar. If c is perpendicular to a, then c = [IIT 1999; Pb. CET 2003; DCE 2005]

A. \[\frac{1}{\sqrt{2}}(-\mathbf{j}+\mathbf{k})\]
B. \[\frac{1}{\sqrt{3}}(-\mathbf{i}-\mathbf{j}-\mathbf{k})\]
C. \[\frac{1}{\sqrt{5}}\,(\mathbf{i}-2\mathbf{j})\]
D. \[\frac{1}{\sqrt{3}}(\mathbf{i}-\mathbf{j}-\mathbf{k})\]
Answer» B. \[\frac{1}{\sqrt{3}}(-\mathbf{i}-\mathbf{j}-\mathbf{k})\]
6359.

\[\int_{{}}^{{}}{\frac{x}{{{x}^{4}}+{{x}^{2}}+1}dx}\] equal to                [MP PET 2004]

A. \[\frac{1}{3}{{\tan }^{-1}}\left( \frac{2{{x}^{2}}+1}{3} \right)\]
B. \[\frac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{2{{x}^{2}}+1}{\sqrt{3}} \right)\]
C. \[\frac{1}{\sqrt{3}}{{\tan }^{-1}}(2{{x}^{2}}+1)\]
D. None of these
Answer» C. \[\frac{1}{\sqrt{3}}{{\tan }^{-1}}(2{{x}^{2}}+1)\]
6360.

Let \[h(x)=f(x)-{{(f(x))}^{2}}+{{(f(x))}^{3}}\] for every real number x. Then  [IIT 1998]

A. h is increasing whenever f is increasing
B. h is increasing whenever f  is decreasing
C. h is decreasing whenever f is decreasing
D. Nothing can be said in general
Answer» B. h is increasing whenever f  is decreasing
6361.

Let a, b, c are three non-coplanar vectors such that \[{{\mathbf{r}}_{1}}=\mathbf{a}-\mathbf{b}+\mathbf{c},\,\,{{\mathbf{r}}_{2}}=\mathbf{b}+\mathbf{c}-\mathbf{a},\,\,{{\mathbf{r}}_{3}}=\mathbf{c}+\mathbf{a}+\mathbf{b},\]      \[\mathbf{r}=2\mathbf{a}-3\mathbf{b}+4\mathbf{c}.\] If \[\mathbf{r}={{\lambda }_{1}}{{\mathbf{r}}_{1}}+{{\lambda }_{2}}{{\mathbf{r}}_{2}}+{{\lambda }_{3}}{{\mathbf{r}}_{3}},\] then

A. \[{{\lambda }_{1}}=7\]
B. \[{{\lambda }_{1}}+{{\lambda }_{3}}=3\]
C. \[{{\lambda }_{1}}+{{\lambda }_{2}}+{{\lambda }_{3}}=4\]
D. \[{{\lambda }_{3}}+{{\lambda }_{2}}=2\]
Answer» C. \[{{\lambda }_{1}}+{{\lambda }_{2}}+{{\lambda }_{3}}=4\]
6362.

From the bottom of a pole of height h, the angle of elevation of the top of a tower is \[\alpha \]and the pole subtends angle \[\beta \]at the top of the tower. The height of the tower is  [Roorkee 1988]

A. \[\frac{h\tan (\alpha -\beta )}{\tan (\alpha -\beta )-\tan \alpha }\]
B. \[\frac{h\cot (\alpha -\beta )}{\cot (\alpha -\beta )-\cot \alpha }\]
C. \[\frac{\cot (\alpha -\beta )}{\cot (\alpha -\beta )-\cot \alpha }\]
D. None of these
Answer» C. \[\frac{\cot (\alpha -\beta )}{\cot (\alpha -\beta )-\cot \alpha }\]
6363.

\[\int_{{}}^{{}}{\frac{dx}{2+\cos x}=}\]

A. \[2{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}}\tan \frac{x}{2} \right)+c\]
B. \[\frac{2}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}}\tan \frac{x}{2} \right)+c\]
C. \[\frac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}}\tan \frac{x}{2} \right)+c\]
D. None of these
Answer» C. \[\frac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}}\tan \frac{x}{2} \right)+c\]
6364.

The function \[f(x)={{\sin }^{4}}x+{{\cos }^{4}}x\] increases, if [IIT 1999; Pb. CET 2001]

A. \[0<x<\frac{\pi }{8}\]
B. \[\frac{\pi }{4}<x<\frac{3\pi }{8}\]
C. \[\frac{3\pi }{8}<x<\frac{5\pi }{8}\]
D. \[\frac{5\pi }{8}<x<\frac{3\pi }{4}\]
Answer» C. \[\frac{3\pi }{8}<x<\frac{5\pi }{8}\]
6365.

If \[f(x)\,=\,\left\{ \begin{matrix} x{{e}^{-\,\left( \frac{1}{|\,x\,|}\,+\,\frac{1}{x} \right)}}, & x\ne 0  \\  0\,\,\,\,\,\,\,\,\,\,\,\,\,, & x=0  \\ \end{matrix} \right.\] , then \[f(x)\,\] is [AIEEE 2003]

A. Continuous as well as differentiable for all x
B. Continuous for all x but not differentiable at \[x=0\]
C. Neither differentiable nor continuous at \[x=0\]
D. Discontinuous every where
Answer» C. Neither differentiable nor continuous at \[x=0\]
6366.

The distance of the point \[B\,(\mathbf{i}+2\mathbf{j}+3\mathbf{k})\] from the line which is passing through \[A\,(4\mathbf{i}+2\mathbf{j}+2\mathbf{k})\] and which is parallel to the vector \[\overrightarrow{C}=2\mathbf{i}+3\mathbf{j}+6\mathbf{k}\] is [Roorkee 1993]

A. 10
B. \[\sqrt{10}\]
C. 100
D. None of these
Answer» C. 100
6367.

\[{{(1+x)}^{n}}-nx-1\] is divisible by (where \[n\in N\])

A. \[2x\]
B. \[{{x}^{2}}\]
C. \[2{{x}^{3}}\]
D. All of these
Answer» C. \[2{{x}^{3}}\]
6368.

ABC is triangular park with AB = AC = 100 m. A clock tower is situated at the mid-point of BC. The angles of elevation of the top of the tower at\[A\]and\[B\]are \[{{\cot }^{-1}}3.2\] and \[\text{cose}{{\text{c}}^{-1}}2.6\]respectively. The height of the tower is[EAMCET 1992]

A. 50 m
B. 25 m
C. 40 m
D.  None of these
Answer» C. 40 m
6369.

If \[\int_{{}}^{{}}{\frac{2x+3}{{{x}^{2}}-5x+6}}\ dx=9\ \ln (x-3)-7\ln (x-2)+A\], then \[A=\]                [MP PET 1992]

A. \[5\ln (x-2)+\]Constant
B. \[-4\ln (x-3)+\]constant
C. Constant
D. None of these
Answer» D. None of these
6370.

\[\int_{{}}^{{}}{{{e}^{x/2}}\sin \left( \frac{x}{2}+\frac{\pi }{4} \right)\ dx=}\]    [Roorkee 1982]

A. \[{{e}^{x/2}}\cos \frac{x}{2}+c\]
B. \[\sqrt{2}{{e}^{x/2}}\cos \frac{x}{2}+c\]
C. \[{{e}^{x/2}}\sin \frac{x}{2}+c\]
D. \[\sqrt{2}{{e}^{x/2}}\sin \frac{x}{2}+c\]
Answer» E.
6371.

The function \[f(x)=\frac{\text{ln}(\pi +x)}{\text{ln}(e+x)}\] is   [IIT 1995]

A. Increasing on \[\left[ 0,\,\infty  \right)\]
B. Decreasing on \[\left[ 0,\,\infty  \right)\]
C.  Decreasing on \[\left[ 0,\frac{\pi }{e} \right)\]and increasing on \[\left[ \frac{\pi }{e},\infty  \right)\]
D.  Increasing on \[\left[ 0,\frac{\pi }{e} \right)\] and decreasing on \[\left[ \frac{\pi }{e},\infty  \right)\]
Answer» C.  Decreasing on \[\left[ 0,\frac{\pi }{e} \right)\]and increasing on \[\left[ \frac{\pi }{e},\infty  \right)\]
6372.

The function \[f(x)={{[x]}^{2}}-[{{x}^{2}}]\], (where [y] is the greatest integer less than or equal to y),is discontinuous at [IIT 1999]

A. All integers                               
B. All integers except 0 and 1
C. All integers except 0
D. All integers except 1
Answer» E.
6373.

The edge of a cube is of length -a- then the shortest distance between the diagonal of a cube and an edge skew to it is

A. \[a\sqrt{2}\]
B. a
C. \[\sqrt{2}/a\]
D. \[a/\sqrt{2}\]
Answer» E.
6374.

The vector c directed along the internal bisector of the angle between the vectors \[\mathbf{a}=7\mathbf{i}-4\mathbf{j}-4\mathbf{k}\] and \[\mathbf{b}=-2\mathbf{i}-\mathbf{j}+2\mathbf{k}\] with \[|\mathbf{c}|\,=5\sqrt{6},\] is   

A. \[\frac{5}{3}\,(\mathbf{i}-7\mathbf{j}+2\mathbf{k})\]                    
B. \[\frac{5}{3}\,(5\mathbf{i}+5\mathbf{j}+2\mathbf{k})\]
C. \[\frac{5}{3}\,(\mathbf{i}+7\mathbf{j}+2\mathbf{k})\]      
D. \[\frac{5}{3}\,(-5\mathbf{i}+5\mathbf{j}+2\mathbf{k})\]
Answer» B. \[\frac{5}{3}\,(5\mathbf{i}+5\mathbf{j}+2\mathbf{k})\]
6375.

Let P(n) be a statement and let P(n) Þ p(n + 1) for all natural numbers n, then P(n) is true

A. For all n
B. For all n > 1
C. For all n > m, m being a fixed positive integer
D. Nothing can be said
Answer» E.
6376.

A tower is situated on horizontal plane. From two points, the line joining three points passes through the base and which are \[a\]and \[b\]distance from the base. The angle of elevation of the top are \[\alpha \]and \[90{}^\circ -\alpha \]and \[\theta \]is that angle which two points joining the line makes at the top, the height of tower will be [UPSEAT 1999]

A. \[\frac{a+b}{a-b}\]
B. \[\frac{a-b}{a+b}\]
C. \[\sqrt{ab}\]
D. \[{{(ab)}^{1/3}}\]
Answer» D. \[{{(ab)}^{1/3}}\]
6377.

If the function \[f(x)=2{{x}^{3}}-9a{{x}^{2}}\] \[+12{{a}^{2}}x+1,\]where \[a>0\] attains its maximum and minimum at p and q respectively such that \[{{p}^{2}}=q\], then a  equals [AIEEE 2003]

A. 3
B. 1
C. 2
D. \[\frac{1}{2}\]
Answer» D. \[\frac{1}{2}\]
6378.

The value of \[p\] for which the function \[f(x)=\left\{ \begin{align}   & \frac{{{({{4}^{x}}-1)}^{3}}}{\sin \frac{x}{p}\log \left[ 1+\frac{{{x}^{2}}}{3} \right]},\,x\ne 0 \\  & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,12{{(\log 4)}^{3}},\,\,x=0 \\ \end{align} \right.\]may be continuous at \[x=0\], is              [Orissa JEE 2004]

A. 1
B. 2
C. 3
D. None of these
Answer» E.
6379.

If \[{{P}_{1}}\] and \[{{P}_{2}}\] are the lengths of the perpendiculars from the points (2,3,4) and (1,1,4) respectively from the plane \[3x-6y+2z+11=0\], then \[{{P}_{1}}\] and \[{{P}_{2}}\] are the roots of the equation

A. \[{{P}^{2}}-23P+7=0\]
B. \[7{{P}^{2}}-23P+16=0\]           
C. \[{{P}^{2}}-17P+16=0\]
D. \[{{P}^{2}}-16P+7=0\]
Answer» C. \[{{P}^{2}}-17P+16=0\]
6380.

The distance between two points P and Q is d and the length of their projections of PQ on the co-ordinate planes are \[{{d}_{1}},{{d}_{2}},{{d}_{3}}\]. Then \[d_{1}^{2}+d_{2}^{2}+d_{3}^{2}=k{{d}^{2}}\] where . k- is

A. 1
B. 5
C. 3
D. 2     
Answer» E.
6381.

If \[\mathbf{x}\] is parallel to \[\mathbf{y}\] and \[\mathbf{z}\] where \[\mathbf{x}=2\mathbf{i}+\mathbf{j}+\alpha \mathbf{k}\], \[\mathbf{y}=\alpha \mathbf{i}+\mathbf{k}\] and \[\mathbf{z}=5\mathbf{i}-\mathbf{j}\], then \[\alpha \] is equal to [J & K 2005]

A. \[\pm \sqrt{5}\]
B. \[\pm \sqrt{6}\]
C. \[\pm \sqrt{7}\]
D. None of these
Answer» D. None of these
6382.

The value of the natural numbers n such that the inequality \[{{2}^{n}}>2n+1\] is valid is [MNR 1994]

A. For \[n\ge 3\]
B. For n < 3
C. For mn
D. For any n
Answer» B. For n < 3
6383.

In a \[\Delta ABC,\]let \[\angle C=\frac{\pi }{2}.\]If \[r\]and \[R\]are in radius and the circum-radius respectively of the triangle, then \[2(r+R)\] is equal to                           [IIT Screening 2000; AIEEE 2005]

A. \[a+b\]
B. \[b+c\]
C. \[c+a\]
D. \[a+b+c\]
Answer» B. \[b+c\]
6384.

If \[{{I}_{n}}=\int{{{(\log x)}^{n}}\,\,dx},\] then \[{{I}_{n}}+n{{I}_{n-1}}=\] [Karnataka CET 2003]

A. \[x{{(\log x)}^{n}}\]
B. \[{{(x\log x)}^{n}}\]
C. \[{{(\log x)}^{n-1}}\]
D. \[n{{(\log x)}^{n}}\]
Answer» B. \[{{(x\log x)}^{n}}\]
6385.

The radius of the circular section of the sphere \[|\mathbf{r}|\,=5\]by the plane \[\mathbf{r}\,.\,(\mathbf{i}+\mathbf{j}+\mathbf{k})=3\sqrt{3}\] is [DCE 1999]

A. 1
B. 2
C. 3
D. 4
Answer» E.
6386.

The least remainder when \[{{17}^{30}}\] is divided by 5 is [Karnataka CET  2003]

A. 1
B. 2
C. 3
D. 4
Answer» E.
6387.

In \[\Delta ABC,\]if \[8{{R}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}},\]then the triangle is

A. Right angled
B. Equilateral
C. Acute angled
D. Obtuse angled
Answer» B. Equilateral
6388.

If \[u=\int_{{}}^{{}}{{{e}^{ax}}\cos bx\ dx}\] and \[v=\int_{{}}^{{}}{{{e}^{ax}}\sin bx\ dx}\], then \[({{a}^{2}}+{{b}^{2}})({{u}^{2}}+{{v}^{2}})=\]

A. \[2{{e}^{ax}}\]
B. \[({{a}^{2}}+{{b}^{2}}){{e}^{2ax}}\]
C. \[{{e}^{2ax}}\]
D. \[({{a}^{2}}-{{b}^{2}}){{e}^{2ax}}\]
Answer» D. \[({{a}^{2}}-{{b}^{2}}){{e}^{2ax}}\]
6389.

The function \[f(x)=\int\limits_{-1}^{x}{t({{e}^{t}}-1)(t-1){{(t-2)}^{3}}{{(t-3)}^{5}}}dt\] has a local minimum at x = [IIT 1999]

A. 0
B. 1
C. 2
D. 3
Answer» C. 2
6390.

The function\[f(x)=[x]\cos \left[ \frac{2x-1}{2} \right]\pi ,\,\]where\[[.]\] denotes the greatest integer function, is discontinuous at               [IIT 1995]

A. All x
B. No x
C. All integer points
D. x which is not an integer
Answer» D. x which is not an integer
6391.

The plane \[lx+my=0\] is rotated an angle \[\alpha \] about its line of intersection with the plane \[z=0\], then the equation to the plane in its new position is

A. \[lx+my\pm z\sqrt{({{l}^{2}}+{{m}^{2}})}\tan \alpha =0\]
B. \[lx-my\pm z\sqrt{({{l}^{2}}+{{m}^{2}})}\tan \alpha =0\]
C. \[lx+my\pm z\sqrt{({{l}^{2}}+{{m}^{2}})}\cos \alpha =0\]
D. \[lx-my\pm z\sqrt{({{l}^{2}}+{{m}^{2}})}\cos \alpha =0\]
Answer» B. \[lx-my\pm z\sqrt{({{l}^{2}}+{{m}^{2}})}\tan \alpha =0\]
6392.

Unit vectors a, b and c are coplanar. A unit vector d is perpendicular to them. If \[(\mathbf{a}\times \mathbf{b})\times (\mathbf{c}\times \mathbf{d})=\frac{1}{6}\mathbf{i}-\frac{1}{3}\mathbf{j}+\frac{1}{3}\mathbf{k}\] and the angle between a and b is \[{{30}^{o}}\], then c is    [Roorkee Qualifying 1998]

A. \[\frac{(\mathbf{i}-2\mathbf{j}+2\mathbf{k})}{3}\]
B. \[\frac{(2\mathbf{i}+\mathbf{j}-\mathbf{k})}{3}\]
C. \[\frac{(-\mathbf{i}+2\mathbf{j}-2\mathbf{k})}{3}\]
D. \[\frac{(-\mathbf{i}+2\mathbf{j}+\mathbf{k})}{3}\]
Answer» B. \[\frac{(2\mathbf{i}+\mathbf{j}-\mathbf{k})}{3}\]
6393.

For every natural number n, \[{{3}^{2n+2}}-8n-9\] is divisible by [IIT 1977]

A. 16
B. 128
C. 256
D. None of these
Answer» B. 128
6394.

\[\int_{{}}^{{}}{\frac{{{x}^{2}}}{{{(x\sin x+\cos x)}^{2}}}\ dx=}\]          [MNR 1989; RPET 2000]

A. \[\frac{\sin x+\cos x}{x\sin x+\cos x}\]
B. \[\frac{x\sin x-\cos x}{x\sin x+\cos x}\]
C. \[\frac{\sin x-x\cos x}{x\sin x+\cos x}\]
D. None of these
Answer» D. None of these
6395.

On the interval [0, 1], the function \[{{x}^{25}}{{(1-x)}^{75}}\] takes its maximum value at the point [IIT 1995]

A. 0
B. 44228
C. 44256
D. ¼
Answer» E.
6396.

If \[f(x)=\left\{ \begin{align}   & {{x}^{2}}-3,\ 2

A.            \[{{x}^{2}}-7x+3=0\]
B.            \[{{x}^{2}}-20x+66=0\]
C.            \[{{x}^{2}}-17x+66=0\]
D.            \[{{x}^{2}}-18x+60=0\]
Answer» D.            \[{{x}^{2}}-18x+60=0\]
6397.

The equation of motion of a rocket are: \[x=2t,\,y=-4t,\] \[\,z=4t\] where the time 't' is given in seconds, and the co-ordinates of a moving point in kilometers. What is the path of the rocket. At what distance will be the rocket be from the starting point 0(0, 0, 0) in 10 seconds

A. Straight line, 60 km
B. Straight line, 30 km
C. Parabola, 60 km
D. Ellipse, 60 km
Answer» B. Straight line, 30 km
6398.

\[[(\mathbf{a}\times \mathbf{b})\times (\mathbf{b}\times \mathbf{c})\,(\mathbf{b}\times \mathbf{c})\times (\mathbf{c}\times \mathbf{a})\,(\mathbf{c}\times \mathbf{a})\times (\mathbf{a}\times \mathbf{b})]=\,\]

A. \[{{[\mathbf{a}\,\,\mathbf{b}\,\,\mathbf{c}]}^{2}}\]
B. \[{{[\mathbf{a}\,\,\mathbf{b}\,\,\mathbf{c}]}^{3}}\]
C. \[{{[\mathbf{a}\,\,\mathbf{b}\,\,\mathbf{c}]}^{4}}\]
D. None of these
Answer» D. None of these
6399.

The coefficient of \[{{x}^{5}}\] in the expansion of \[{{(1+{{x}^{2}})}^{5}}{{(1+x)}^{4}}\] is            [EAMCET 1996; UPSEAT 2001; Pb. CET 2002]

A. 30
B. 60
C. 40
D. None of these
Answer» C. 40
6400.

If \[\tan \theta =-\frac{1}{\sqrt{3}}\]and \[\sin \theta =\frac{1}{2}\], \[\cos \theta =-\frac{\sqrt{3}}{2}\], then the principal value of \[\theta \] will be [MP PET 1983, 84]

A. \[\frac{\pi }{6}\]
B. \[\frac{5\pi }{6}\]
C. \[\frac{7\pi }{6}\]
D. \[-\frac{\pi }{6}\]
Answer» C. \[\frac{7\pi }{6}\]