Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

6251.

Let \[\Delta =\left| \,\begin{matrix}    1 & \omega  & 2{{\omega }^{2}}  \\    2 & 2{{\omega }^{2}} & 4{{\omega }^{3}}  \\    3 & 3{{\omega }^{3}} & 6{{\omega }^{4}}  \\ \end{matrix}\, \right|\] where \[\omega \] is the cube root of unity, then

A. \[\Delta =0\]
B. \[\Delta =1\]
C. \[\Delta =2\]
D. \[\Delta =3\]
Answer» B. \[\Delta =1\]
6252.

The value of \[\frac{4(\cos {{75}^{o}}+i\sin {{75}^{o}})}{0.4(\cos {{30}^{o}}+i\sin {{30}^{o}})}\] is

A. \[\frac{\sqrt{2}}{10}(1+i)\]
B. \[\frac{\sqrt{2}}{10}(1-i)\]
C. \[\frac{10}{\sqrt{2}}(1-i)\]
D. \[\frac{10}{\sqrt{2}}(1+i)\]
Answer» E.
6253.

\[(1-\omega +{{\omega }^{2}})(1-{{\omega }^{2}}+{{\omega }^{4}})(1-{{\omega }^{4}}+{{\omega }^{8}})...........\]to \[2n\] factors is [EAMCET 1988]

A. \[{{2}^{n}}\]
B. \[{{2}^{2n}}\]
C. 0
D. 1
Answer» C. 0
6254.

If  \[1,\omega ,{{\omega }^{2}}\] are the three cube roots of unity, then \[{{(3+{{\omega }^{2}}+{{\omega }^{4}})}^{6}}=\] [MP PET 1995]

A. 64
B. 729
C. 2
D. 0
Answer» B. 729
6255.

If  \[\omega (\ne 1)\]is a cube root of unity and \[{{(1+\omega )}^{7}}=A+B\omega \],  then \[A\] and \[B\] are respectively, the numbers [IIT 1995]

A. 0, 1
B. 1, 0
C. 1, 1
D. \[-1,\ 1\]
Answer» D. \[-1,\ 1\]
6256.

If \[\omega (\ne 1)\] is a cube root of unity, then \[\left| \begin{matrix}    1 & 1+i+{{\omega }^{2}} & {{\omega }^{2}}  \\    1-i & -1 & {{\omega }^{2}}-1  \\    -i & -i+\omega -1 & -1  \\ \end{matrix} \right|\] is equal to [IIT 1995]

A. 0
B. 1
C. \[\omega \]
D. \[i\]
Answer» B. 1
6257.

The \[{{n}^{th}}\]roots of unity are in [Orissa JEE 2004]

A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer» C. H.P.
6258.

One of the cube roots of unity is [MP PET 1994, 2003]

A. \[\frac{-1+i\sqrt{3}}{2}\]
B. \[\frac{1+i\sqrt{3}}{2}\]
C. \[\frac{1-i\sqrt{3}}{2}\]
D. \[\frac{\sqrt{3}-i}{2}\]
Answer» B. \[\frac{1+i\sqrt{3}}{2}\]
6259.

The roots of the equation \[{{x}^{4}}-1=0\],  are [MP PET 1986]

A. \[1,\,1,i,-i\]
B. \[1,\,-1,i,-i\]
C. \[1,-1,\omega ,{{\omega }^{2}}\]
D. None of these
Answer» C. \[1,-1,\omega ,{{\omega }^{2}}\]
6260.

The roots of \[{{(2-2i)}^{1/3}}\] are

A.  \[\sqrt{2}\left( \cos \frac{\pi }{12}-i\sin \frac{\pi }{12} \right),\sqrt{2}\left( -\sin \frac{\pi }{12}+i\cos \frac{\pi }{12} \right),-1-i\]
B.  \[\sqrt{2}\left( \cos \frac{\pi }{12}+i\sin \frac{\pi }{12} \right),\sqrt{2}\left( -\sin \frac{\pi }{12}-i\cos \frac{\pi }{12} \right)\,,\,1+i\]
C. \[1+\sqrt{2}i,-1-i,-2-2i\]
D. None of the above
Answer» B.  \[\sqrt{2}\left( \cos \frac{\pi }{12}+i\sin \frac{\pi }{12} \right),\sqrt{2}\left( -\sin \frac{\pi }{12}-i\cos \frac{\pi }{12} \right)\,,\,1+i\]
6261.

If  \[z=\frac{\sqrt{3}+i}{2}\], then the value of  \[{{z}^{69}}\] is [RPET 2002]

A. \[-i\]
B. \[i\]
C. 1
D. \[-1\]
Answer» B. \[i\]
6262.

If  \[\alpha ,\beta ,\gamma \] are the cube roots of  \[p(p

A. \[\frac{1}{2}(-1+i\sqrt{3})\]
B. \[\frac{1}{2}(1+i\sqrt{3})\]
C. \[\frac{1}{2}(1-i\sqrt{3})\]
D. None of these
Answer» B. \[\frac{1}{2}(1+i\sqrt{3})\]
6263.

\[{{\left( -\frac{1}{2}+\frac{\sqrt{3}}{2}i \right)}^{1000}}=\]

A. \[\frac{1}{2}+\frac{\sqrt{3}}{2}i\]
B. \[\frac{1}{2}-\frac{\sqrt{3}}{2}i\]
C. \[-\frac{1}{2}+\frac{\sqrt{3}}{2}i\]
D. None of these
Answer» D. None of these
6264.

The cube roots of unity when represented on the Argand plane form the vertices of an       [IIT 1988; Pb. CET 2004]

A. Equilateral triangle
B. Isosceles triangle
C. Right angled triangle
D. None of these
Answer» B. Isosceles triangle
6265.

The value of \[\frac{a+b\omega +c{{\omega }^{2}}}{b+c\omega +a{{\omega }^{2}}}+\frac{a+b\omega +c{{\omega }^{2}}}{c+a\omega +b{{\omega }^{2}}}\] will be [BIT Ranchi 1989; Orissa JEE 2003]

A. 1
B. -1
C. 2
D. -2
Answer» C. 2
6266.

The product of all the roots of \[{{\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)}^{3/4}}\]  is  [MNR 1984; EAMCET 1985]

A. \[-1\]
B. 1
C. \[\frac{3}{2}\]
D. \[-\frac{1}{2}\]
Answer» C. \[\frac{3}{2}\]
6267.

If \[x=a+b,y=a\omega +b{{\omega }^{2}},z=a{{\omega }^{2}}+b\omega \],  then the value of \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}\] is equal to        [Roorkee 1977; IIT 1970]

A. \[{{a}^{3}}+{{b}^{3}}\]
B. \[3({{a}^{3}}+{{b}^{3}})\]
C. \[3({{a}^{2}}+{{b}^{2}})\]
D. None of these
Answer» C. \[3({{a}^{2}}+{{b}^{2}})\]
6268.

If  \[\omega \] is a cube root of unity, then a root of the equation \[\left| \begin{matrix}    x+1 & \omega  & {{\omega }^{2}}  \\    \omega  & x+{{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix} \right|=0\] is   [MNR 1990; MP PET 1999]

A. \[x=1\]
B. \[x=\omega \]
C. \[x={{\omega }^{2}}\]
D. \[x=0\]
Answer» E.
6269.

If  \[\omega \] is a complex cube root of unity, then \[(1+\omega )(1+{{\omega }^{2}})\] \[(1+{{\omega }^{4}})(1+{{\omega }^{8}})...\]to \[2n\] factors = [AMU 2000]

A.  0
B. 1
C. \[-1\]
D. None of these
Answer» C. \[-1\]
6270.

If \[\omega \] is a complex cube root of unity, then \[(x-y)(x\omega -y)\] \[(x{{\omega }^{2}}-y)=\]

A. \[{{x}^{2}}+{{y}^{2}}\]
B. \[{{x}^{2}}-{{y}^{2}}\]
C. \[{{x}^{3}}-{{y}^{3}}\]
D. \[{{x}^{3}}+{{y}^{3}}\]
Answer» D. \[{{x}^{3}}+{{y}^{3}}\]
6271.

If  \[z={{\left( \frac{\sqrt{3}}{2}+\frac{i}{2} \right)}^{5}}+{{\left( \frac{\sqrt{3}}{2}-\frac{i}{2} \right)}^{5}}\], then [MP PET 1997]

A. \[\operatorname{Re}(z)=0\]
B. \[\operatorname{Im}(z)=0\]
C. \[\operatorname{Re}(z)>0,\operatorname{Im}(z)>0\]
D. \[\operatorname{Re}(z)>0,\operatorname{Im}(z)<0\]
Answer» C. \[\operatorname{Re}(z)>0,\operatorname{Im}(z)>0\]
6272.

If  \[x=a,y=b\omega ,z=c{{\omega }^{2}}\], where \[\omega \] is a complex cube root of unity, then \[\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=\] [AMU 1983]

A. 3
B. 1
C. 0
D. None of these
Answer» D. None of these
6273.

If \[\omega \] is a cube root of unity, then the value of \[{{(1-\omega +{{\omega }^{2}})}^{5}}+{{(1+\omega -{{\omega }^{2}})}^{5}}=\] [IIT 1965; MP PET 1997; RPET 1997]

A. 16
B. 32
C. 48
D. -32
Answer» C. 48
6274.

If w is a complex cube root of unity, then \[(1-\omega )(1-{{\omega }^{2}})\] \[(1-{{\omega }^{4}})(1-{{\omega }^{8}})=\]

A. 0
B. 1
C. -1
D. 9
Answer» E.
6275.

Square of either of the two imaginary cube roots of unity will be

A. Real root of unity
B. Other imaginary cube root of unity
C. Sum of two imaginary roots of unity
D. None of these
Answer» C. Sum of two imaginary roots of unity
6276.

If \[\omega \] is a cube root of unity, then \[{{(1+\omega )}^{3}}-{{(1+{{\omega }^{2}})}^{3}}=\]

A. 0
B. \[\omega \]
C. \[{{\omega }^{2}}\]
D. None of these
Answer» B. \[\omega \]
6277.

\[{{(27)}^{1/3}}=\]

A. 3
B. \[3,\,\,3i,\,3{{i}^{2}}\]
C. \[3,\,3\omega ,\,3{{\omega }^{2}}\]
D. None of these
Answer» D. None of these
6278.

If \[\omega \] is a cube root of unity, then \[(1+\omega -{{\omega }^{2}})\] \[(1-\omega +{{\omega }^{2}})\] =                 [MNR 1990; MP PET 1993, 2002]

A. 1
B. 0
C. 2
D. 4
Answer» E.
6279.

The two numbers such that each one is square of the other, are [MP PET 1987]

A. \[\omega ,\,{{\omega }^{3}}\]
B. \[-i,\,\,i\]
C. \[-1,\,1\]
D. \[\omega ,\,\,{{\omega }^{2}}\]
Answer» E.
6280.

If \[i{{z}^{4}}+1=0\], then \[z\] can take the value [UPSEAT 2004]

A. \[\frac{1+i}{\sqrt{2}}\]
B. \[\cos \frac{\pi }{8}+i\,\sin \frac{\pi }{8}\]
C. \[\frac{1}{4i}\]
D. i
Answer» C. \[\frac{1}{4i}\]
6281.

If n is a positive integer, then \[{{(1+i)}^{n}}+{{(1-i)}^{n}}\] is equal to [Orissa JEE 2003]

A. \[{{(\sqrt{2})}^{n-2}}\cos \left( \frac{n\pi }{4} \right)\]
B. \[{{(\sqrt{2})}^{n-2}}\sin \left( \frac{n\pi }{4} \right)\]
C. \[{{(\sqrt{2})}^{n+2}}\cos \left( \frac{n\pi }{4} \right)\]
D. \[{{(\sqrt{2})}^{n+2}}\sin \left( \frac{n\pi }{4} \right)\]
Answer» D. \[{{(\sqrt{2})}^{n+2}}\sin \left( \frac{n\pi }{4} \right)\]
6282.

\[{{\left( \frac{1+\sin \theta +i\,\cos \theta }{1+\sin \theta -i\,\cos \theta } \right)}^{n}}\]= [Kerala (Engg.) 2002]

A. \[\cos \left( \frac{n\pi }{2}-n\theta  \right)+i\,\sin \left( \frac{n\pi }{2}-n\theta  \right)\]
B. \[\cos \left( \frac{n\pi }{2}+n\theta  \right)+i\,\sin \left( \frac{n\pi }{2}+n\theta  \right)\]
C. \[\sin \left( \frac{n\pi }{2}-n\theta  \right)+i\,\cos \left( \frac{n\pi }{2}-n\theta  \right)\]
D. \[\cos \,n\left( \frac{\pi }{2}+2\theta  \right)+i\,\sin \,n\left( \frac{\pi }{2}+2\theta  \right)\]
Answer» B. \[\cos \left( \frac{n\pi }{2}+n\theta  \right)+i\,\sin \left( \frac{n\pi }{2}+n\theta  \right)\]
6283.

The value of i1/3 is [UPSEAT 2002]

A. \[\frac{\sqrt{3}\,+i}{2}\]
B. \[\frac{\sqrt{3}\,-i}{2}\]
C. \[\frac{1+i\sqrt{3}}{2}\]
D. \[\frac{1-i\sqrt{3}}{2}\]
Answer» B. \[\frac{\sqrt{3}\,-i}{2}\]
6284.

\[\frac{{{(\cos \alpha +i\,\sin \alpha )}^{4}}}{{{(\sin \beta +i\,\cos \beta )}^{5}}}=\] [RPET 2002]

A. \[\cos (4\alpha +5\beta )+i\,\sin (4\alpha +5\beta )\]
B. \[\cos (4\alpha +5\beta )-i\,\sin (4\alpha +5\beta )\]
C. \[\sin (4\alpha +5\beta )-i\cos (4\alpha +5\beta )\]
D. None of these
Answer» D. None of these
6285.

 If \[{{x}_{n}}=\cos \,\left( \frac{\pi }{{{4}^{n}}} \right)+i\,\sin \,\left( \frac{\pi }{{{4}^{n}}} \right)\,,\] then \[{{x}_{1}}.\,{{x}_{2}}.\,{{x}_{3}}....\infty =\] [EAMCET 2002]

A. \[\frac{1+i\sqrt{3}}{2}\]
B. \[\frac{-1+i\sqrt{3}}{2}\]
C. \[\frac{1-i\sqrt{3}}{2}\]
D. \[\frac{-1-i\sqrt{3}}{2}\]
Answer» B. \[\frac{-1+i\sqrt{3}}{2}\]
6286.

\[{{\left[ \frac{1+\cos (\pi /8)+i\,\sin (\pi /8)}{1+\cos (\pi /8)-i\,\sin (\pi /8)} \right]}^{8}}\] is equal to [RPET 2001]

A. -1
B. 0
C. 1
D. 2
Answer» B. 0
6287.

If  \[{{x}_{r}}=\cos \left( \frac{\pi }{{{2}^{r}}} \right)+i\sin \left( \frac{\pi }{{{2}^{r}}} \right)\], then\[{{x}_{1}}.{{x}_{2}}......\infty \]is [RPET 1990, 2000; BIT Mesra 1996; Karnataka CET 2000]

A. \[-3\]
B. \[-2\]
C. \[-1\]
D.   0
Answer» D.   0
6288.

\[{{(\sin \theta +i\,\cos \theta )}^{n}}\,\]is equal to [RPET 2001]

A. \[\cos n\theta +i\,\sin n\theta \]
B. \[\sin n\theta +i\,\cos n\theta \]
C. \[\cos n\left( \frac{\pi }{2}-\theta  \right)+i\,\sin n\left( \frac{\pi }{2}-\theta  \right)\]
D. None of these
Answer» D. None of these
6289.

We express \[\frac{{{(\cos 2\theta -i\sin 2\theta )}^{4}}{{(\cos 4\theta +i\sin 4\theta )}^{-5}}}{{{(\cos 3\theta +i\sin 3\theta )}^{-2}}{{(\cos 3\theta -i\sin 3\theta )}^{-9}}}\]  in the form of \[x+iy\], we get [Karnataka CET 2001]

A. \[\cos 49\theta -i\,\sin 49\theta \]
B. \[\cos 23\theta -i\,\sin 23\theta \]
C. \[\cos 49\theta +i\,\sin 49\theta \]
D. \[\cos 21\theta +i\,\sin 21\theta \]
Answer» B. \[\cos 23\theta -i\,\sin 23\theta \]
6290.

The value of \[{{\left[ \frac{1-\cos \frac{\pi }{10}+i\sin \frac{\pi }{10}}{1-\cos \frac{\pi }{10}-i\sin \frac{\pi }{10}} \right]}^{10}}=\] [Karnataka CET 2001]

A. 0
B. -1
C. 1
D. 2
Answer» C. 1
6291.

\[{{(-\sqrt{3}+i)}^{53}}\] where \[{{i}^{2}}=-1\] is equal to [AMU 2000]

A. \[{{2}^{53}}(\sqrt{3}+2i)\]
B.   \[{{2}^{52}}(\sqrt{3}-i)\]
C. \[{{2}^{53}}\,\left( \frac{\sqrt{3}}{2}+\frac{1}{2}i \right)\]
D. \[{{2}^{53}}(\sqrt{3}-i)\]
Answer» D. \[{{2}^{53}}(\sqrt{3}-i)\]
6292.

If \[\cos \alpha +\cos \beta +\cos \gamma =0=\]\[\sin \alpha +\sin \beta +\sin \gamma \] then \[\cos 2\alpha +\cos 2\beta +\cos 2\gamma \] equals [RPET 2000]

A. \[2\cos (\alpha +\beta +\gamma )\]
B. \[\cos 2(\alpha +\beta +\gamma )\]
C. 0
D. 1
Answer» D. 1
6293.

If \[\sin \alpha +\sin \beta +\sin \gamma =0=\]\[\cos \alpha +\cos \beta +\cos \gamma ,\] then the value of  \[{{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma \] is    [RPET 1999]

A. 44257
B. 44230
C. 44228
D. 1
Answer» C. 44228
6294.

\[{{\left( \frac{\cos \theta +i\sin \theta }{\sin \theta +i\cos \theta } \right)}^{4}}\]equals [RPET 1996]

A. \[\sin 8\theta -i\cos 8\theta \]
B. \[\cos 8\theta -i\sin 8\theta \]
C. \[\sin 8\theta +i\cos 8\theta \]
D. \[\cos 8\theta +i\sin 8\theta \]
Answer» E.
6295.

The value of expression \[\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\] \[\,\left( \cos \frac{\pi }{{{2}^{2}}}+i\sin \frac{\pi }{{{2}^{2}}} \right)\]........to \[\infty \] is    [Kurukshetra CEE 1998]

A. \[-1\]
B.  \[1\]
C. 0
D. 2
Answer» B.  \[1\]
6296.

If  \[{{\left( \frac{1+\cos \theta +i\sin \theta }{i+\sin \theta +i\cos \theta } \right)}^{4}}=\cos n\theta +i\sin n\theta \], then \[n\] is equal to [EAMCET 1986]

A. 1
B. 2
C. 3
D. 4
Answer» E.
6297.

Let \[x=\alpha +\beta ,\,y=\alpha \omega +\beta {{\omega }^{2}},\,z=\alpha {{\omega }^{2}}+\beta \omega ,\,\omega \] is an imaginary cube root of unity. Product of xyz is  [Orissa JEE 2005]

A. \[{{\alpha }^{2}}+{{\beta }^{2}}\]
B. \[{{\alpha }^{2}}-{{\beta }^{2}}\]
C. \[{{\alpha }^{3}}+{{\beta }^{3}}\]
D. \[{{\alpha }^{3}}-{{\beta }^{3}}\]
Answer» E.
6298.

If \[\omega \] is a cube root of unity but not equal to 1 then minimum value of \[|a+b\omega +c{{\omega }^{2}}|\] (where a, b, c are integers but not all equal) is [IIT Screening 2005]

A. 0
B. \[\frac{\sqrt{3}}{2}\]
C. 1
D. 2
Answer» D. 2
6299.

If \[{{\tan }^{-1}}(\alpha +i\beta )=x+iy,\] then x = [RPET 2002]

A. \[\frac{1}{2}{{\tan }^{-1}}\left( \frac{2\alpha }{1-{{\alpha }^{2}}-{{\beta }^{2}}} \right)\]
B. \[\frac{1}{2}{{\tan }^{-1}}\left( \frac{2\alpha }{1+{{\alpha }^{2}}+{{\beta }^{2}}} \right)\]
C. \[{{\tan }^{-1}}\left( \frac{2\alpha }{1-{{\alpha }^{2}}-{{\beta }^{2}}} \right)\]
D. None of these
Answer» B. \[\frac{1}{2}{{\tan }^{-1}}\left( \frac{2\alpha }{1+{{\alpha }^{2}}+{{\beta }^{2}}} \right)\]
6300.

\[{{\left( \frac{1+\cos \varphi +i\sin \varphi }{1+\cos \varphi -i\sin \varphi } \right)}^{n}}=\]

A. \[\cos n\varphi -i\sin n\varphi \]
B. \[\cos n\varphi +i\sin n\varphi \]
C. \[\sin n\varphi +i\cos n\varphi \]
D. \[\sin n\varphi -i\cos n\varphi \]
Answer» C. \[\sin n\varphi +i\cos n\varphi \]