MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 6401. |
If coordinates of the points A and B are (2, 4) and (4, 2) respectively and point M is such that A-M-B also AB = 3 AM, then the coordinates of M are |
| A. | \[\left( \frac{8}{3},\,\frac{10}{3} \right)\] |
| B. | \[\left( \frac{10}{3},\frac{14}{4} \right)\] |
| C. | \[\left( \frac{10}{3},\frac{6}{3} \right)\] |
| D. | \[\left( \frac{13}{4},\frac{10}{4} \right)\] |
| Answer» B. \[\left( \frac{10}{3},\frac{14}{4} \right)\] | |
| 6402. |
A line through \[A(-5,-\ 4)\] meets the lines \[x+3y+2=0,\] \[2x+y+4=0\] and \[x-y-5=0\] at B, C and D respectively. If \[{{\left( \frac{15}{AB} \right)}^{2}}+{{\left( \frac{10}{AC} \right)}^{2}}={{\left( \frac{6}{AD} \right)}^{2}},\] then the equation of the line is [IIT 1993] |
| A. | \[2x+3y+22=0\] |
| B. | \[5x-4y+7=0\] |
| C. | \[3x-2y+3=0\] |
| D. | None of these |
| Answer» B. \[5x-4y+7=0\] | |
| 6403. |
The equations to a pair of opposite sides of a parallelogram are \[{{x}^{2}}-5x+6=0\]and \[{{y}^{2}}-6y+5=0\]. The equations to its diagonals are [IIT 1994; Pb. CET 2003] |
| A. | \[x+4y=13\]and \[y=4x-7\] |
| B. | \[4x+y=13\]and \[4y=x-7\] |
| C. | \[4x+y=13\]and \[y=4x-7\] |
| D. | \[y-4x=13\]and \[y+4x=7\] |
| Answer» D. \[y-4x=13\]and \[y+4x=7\] | |
| 6404. |
Let p be the proposition : Mathematics is a interesting and let q be the propositions that Mathematics is difficult, then the symbol \[p\wedge q\] means [Karnataka CET 2001] |
| A. | Mathematics is interesting implies that Mathematics is difficult |
| B. | Mathematics is interesting implies and is implied by Mathematics is difficult |
| C. | Mathematics is interesting and Mathematics is difficult |
| D. | Mathematics is interesting or Mathematics is difficult |
| Answer» D. Mathematics is interesting or Mathematics is difficult | |
| 6405. |
The average of n numbers \[{{x}_{1}},\,{{x}_{2}},\,{{x}_{3}},\,......,\,{{x}_{n}}\] is M. If \[{{x}_{n}}\] is replaced by \[{x}'\], then new average is [DCE 2000] |
| A. | \[M-{{x}_{n}}+{x}'\] |
| B. | \[\frac{nM-{{x}_{n}}+{x}'}{n}\] |
| C. | \[\frac{(n-1)M+{x}'}{n}\] |
| D. | \[\frac{M-{{x}_{n}}+{x}'}{n}\] |
| Answer» C. \[\frac{(n-1)M+{x}'}{n}\] | |
| 6406. |
The order of the differential equation whose general solution is given by \[y={{C}_{1}}{{e}^{2x+{{C}_{2}}}}+\] \[{{C}_{3}}{{e}^{x}}+{{C}_{4}}\sin (x+{{C}_{5}})\] is [AMU 2000] |
| A. | 5 |
| B. | 4 |
| C. | 3 |
| D. | 2 |
| Answer» C. 3 | |
| 6407. |
If \[f(x+y)=f(x).f(y)\]for all x and y and \[f(5)=2\], \[f'(0)=3\], then \[f'(5)\]will be [IIT 1981; Karnataka CET 2000; UPSEAT 2002; MP PET 2002; AIEEE 2002] |
| A. | 2 |
| B. | 4 |
| C. | 6 |
| D. | 8 |
| Answer» D. 8 | |
| 6408. |
If \[P\equiv (0,\,1,\,0),Q\equiv (0,\,0,\,1)\], then projection of \[PQ\] on the plane \[x+y+z=3\]is [EAMCET 2002] |
| A. | \[\sqrt{3}\] |
| B. | 3 |
| C. | \[\sqrt{2}\] |
| D. | 2 |
| Answer» D. 2 | |
| 6409. |
If centroid of the tetrahedron \[OABC\], where \[A,B,C\]are given by (a, 2, 3),(1, b, 2) and (2, 1, c) respectively be (1, 2, -1), then distance of \[P(a,b,c)\] from origin is equal to |
| A. | \[\sqrt{107}\] |
| B. | \[\sqrt{14}\] |
| C. | \[\sqrt{107/14}\] |
| D. | None of these |
| Answer» B. \[\sqrt{14}\] | |
| 6410. |
If a, b and c are unit vectors, then \[|\mathbf{a}-\mathbf{b}{{|}^{2}}+|\mathbf{b}-\mathbf{c}{{|}^{2}}+|\mathbf{c}-\mathbf{a}{{|}^{2}}\] does not exceed [IIT Screening 2001] |
| A. | 4 |
| B. | 9 |
| C. | 8 |
| D. | 6 |
| Answer» C. 8 | |
| 6411. |
If the sides of a \[\Delta \]be\[({{x}^{2}}+x+1),\,(2x+1)\] and \[({{x}^{2}}-1),\]then the greatest angle is [EAMCET 1987; Kerala (Engg.) 2001] |
| A. | \[{{105}^{o}}\] |
| B. | \[{{120}^{o}}\] |
| C. | \[{{135}^{o}}\] |
| D. | None |
| Answer» C. \[{{135}^{o}}\] | |
| 6412. |
The locus of a point P which divides the line joining (1, 0) and \[(2\cos \theta ,2\sin \theta )\]internally in the ratio 2 : 3 for all \[\theta \], is a [IIT 1986] |
| A. | Straight line |
| B. | Circle |
| C. | Pair of straight lines |
| D. | Parabola |
| Answer» C. Pair of straight lines | |
| 6413. |
\[\int_{{}}^{{}}{\cos 2\theta \log \left( \frac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta } \right)\ d\theta =}\] [IIT 1994] |
| A. | \[{{(\cos \theta -\sin \theta )}^{2}}\log \left( \frac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta } \right)\] |
| B. | \[{{(\cos \theta +\sin \theta )}^{2}}\log \left( \frac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta } \right)\] |
| C. | \[\frac{{{(\cos \theta -\sin \theta )}^{2}}}{2}\log \left( \frac{\cos \theta -\sin \theta }{\cos \theta +\sin \theta } \right)\] |
| D. | \[\frac{1}{2}\sin 2\theta \log \tan \left( \frac{\pi }{4}+\theta \right)-\frac{1}{2}\log \sec 2\theta \] |
| Answer» E. | |
| 6414. |
N characters of information are held on magnetic tape, in batches of x characters each; the batch processing time is \[\alpha +\beta {{x}^{2}}\] seconds; \[\alpha \]and \[\beta \] are constants. The optimal value of x for fast processing is [MNR 1986] |
| A. | \[\frac{\alpha }{\beta }\] |
| B. | \[\frac{\beta }{\alpha }\] |
| C. | \[\sqrt{\frac{\alpha }{\beta }}\] |
| D. | \[\sqrt{\frac{\beta }{\alpha }}\] |
| Answer» D. \[\sqrt{\frac{\beta }{\alpha }}\] | |
| 6415. |
If f is strictly increasing function, then \[\underset{x\to 0}{\mathop{\lim }}\,\frac{f({{x}^{2}})-f(x)}{f(x)-f(0)}\] is equal to [IIT Screening 2004] |
| A. | 0 |
| B. | 1 |
| C. | -1 |
| D. | 2 |
| Answer» D. 2 | |
| 6416. |
If in a triangle \[ABC\], \[\frac{\sin A}{4}=\frac{\sin B}{5}=\frac{\sin C}{6}\], then the value of \[\cos A+\cos B+\cos C\]is equal to |
| A. | \[\frac{69}{48}\] |
| B. | \[\frac{96}{48}\] |
| C. | \[\frac{48}{69}\] |
| D. | None of these |
| Answer» B. \[\frac{96}{48}\] | |
| 6417. |
The image of the point (4, - 3) with respect to the line y = x is [RPET 2002] |
| A. | (- 4, - 3) |
| B. | (3, 4) |
| C. | (- 4, 3) |
| D. | (- 3, 4) |
| Answer» E. | |
| 6418. |
\[\int_{{}}^{{}}{x\sqrt{2x+3}}\ dx=\] [AISSE 1985] |
| A. | \[\frac{x}{3}{{(2x+3)}^{3/2}}-\frac{1}{15}{{(2x+3)}^{5/2}}+c\] |
| B. | \[\frac{x}{3}{{(2x+3)}^{3/2}}+\frac{1}{15}{{(2x+3)}^{5/2}}+c\] |
| C. | \[\frac{x}{2}{{(2x+3)}^{3/2}}+\frac{1}{6}{{(2x+3)}^{5/2}}+c\] |
| D. | None of these |
| Answer» B. \[\frac{x}{3}{{(2x+3)}^{3/2}}+\frac{1}{15}{{(2x+3)}^{5/2}}+c\] | |
| 6419. |
If \[f(x)={{x}^{2}}+2bx+2{{c}^{2}}\]and \[g(x)=-{{x}^{2}}-2cx+{{b}^{2}}\] such that min \[f(x)>\] max \[g(x)\], then the relation between b and c is [IIT Screening 2003] |
| A. | No real value of b and c |
| B. | \[0<c<b\sqrt{2}\] |
| C. | \[|c|<\,|b|\sqrt{2}\] |
| D. | \[|c|\,>\,|b|\sqrt{2}\] |
| Answer» E. | |
| 6420. |
The integer n for which \[\underset{x\to 0}{\mathop{\lim }}\,\,\frac{(\cos x-1)\,(\cos x-{{e}^{x}})}{{{x}^{n}}}\] is a finite non-zero number is [IIT Screening 2002] |
| A. | 1 |
| B. | 2 |
| C. | 3 |
| D. | 4 |
| Answer» D. 4 | |
| 6421. |
If the sum of the coefficients in the expansion of \[{{(1-3x+10{{x}^{2}})}^{n}}\] is a and if the sum of the coefficients in the expansion of \[{{(1+{{x}^{2}})}^{n}}\] is b, then [UPSEAT 2001] |
| A. | \[a=3b\] |
| B. | \[a={{b}^{3}}\] |
| C. | \[b={{a}^{3}}\] |
| D. | None of these |
| Answer» C. \[b={{a}^{3}}\] | |
| 6422. |
The sum of the coefficients in the expansion of \[{{(1+x-3{{x}^{2}})}^{2163}}\] will be [IIT 1982] |
| A. | 0 |
| B. | 1 |
| C. | \[-1\] |
| D. | \[{{2}^{2163}}\] |
| Answer» D. \[{{2}^{2163}}\] | |
| 6423. |
A line L passes through the points (1, 1) and (2, 0) and another line \[{L}'\] passes through \[\left( \frac{1}{2},0 \right)\] and perpendicular to L. Then the area of the triangle formed by the lines \[L,L'\] and y- axis, is [RPET 1991] |
| A. | 15/8 |
| B. | 25/4 |
| C. | 25/8 |
| D. | 25/16 |
| Answer» E. | |
| 6424. |
The value of \[\int{\frac{dx}{3-2x-{{x}^{2}}}}\] will be [UPSEAT 1999] |
| A. | \[\frac{1}{4}\log \,\left( \frac{3+x}{1-x} \right)\] |
| B. | \[\frac{1}{3}\log \,\left( \frac{3+x}{1-x} \right)\] |
| C. | \[\frac{1}{2}\log \,\left( \frac{3+x}{1-x} \right)\] |
| D. | \[\log \,\left( \frac{1-x}{3+x} \right)\] |
| Answer» B. \[\frac{1}{3}\log \,\left( \frac{3+x}{1-x} \right)\] | |
| 6425. |
Let \[f(x)=\int\limits_{0}^{x}{\frac{\cos t}{t}dt,\,\,x>0}\] then \[f(x)\] has [Kurukshetra CEE 2002] |
| A. | Maxima when \[n=-2,\,-4,\,-6,\,.....\] |
| B. | Maxima when \[n=-1,\,-3,\,-5,\,....\] |
| C. | Minima when \[n=0,\,2,\,4,....\] |
| D. | Minima when \[n=1,3,5....\] |
| Answer» C. Minima when \[n=0,\,2,\,4,....\] | |
| 6426. |
The \[\underset{x\to 0}{\mathop{\lim }}\,{{(\cos x)}^{\cot x}}\]is [RPET 1999] |
| A. | -1 |
| B. | 0 |
| C. | 1 |
| D. | None of these |
| Answer» D. None of these | |
| 6427. |
In \[\Delta ABC,\]if\[\sin A:\sin C=\sin (A-B):\sin (B-C),\] then |
| A. | \[a,\ b,\ c\]are in A.P. |
| B. | \[{{a}^{2}},\ {{b}^{2}},\ {{c}^{2}}\]are in A.P. |
| C. | \[{{a}^{2}},\ {{b}^{2}},\ {{c}^{2}}\]are in G. P. |
| D. | None of these |
| Answer» C. \[{{a}^{2}},\ {{b}^{2}},\ {{c}^{2}}\]are in G. P. | |
| 6428. |
The area of triangle formed by the lines \[x=0,y=0\] and \[\frac{x}{a}+\frac{y}{b}=1\], is [RPET 1984] |
| A. | \[ab\] |
| B. | \[\frac{ab}{2}\] |
| C. | \[2ab\] |
| D. | \[\frac{ab}{3}\] |
| Answer» C. \[2ab\] | |
| 6429. |
If \[I=\int_{{}}^{{}}{{{e}^{x}}\sin 2x\ dx}\], then for what value of K, \[KI={{e}^{x}}(\sin 2x-2\cos 2x)+\]constant [MP PET 1992] |
| A. | 1 |
| B. | 3 |
| C. | 5 |
| D. | 7 |
| Answer» D. 7 | |
| 6430. |
The value of \[\underset{x\to \frac{\pi }{2}}{\mathop{\lim }}\,\frac{\int_{\pi /2}^{x}{t\,dt}}{\sin (2x-\pi )}\]is [MP PET 1998] |
| A. | \[\infty \] |
| B. | \[\frac{\pi }{2}\] |
| C. | \[\frac{\pi }{4}\] |
| D. | \[\frac{\pi }{8}\] |
| Answer» D. \[\frac{\pi }{8}\] | |
| 6431. |
The line \[\frac{x-3}{2}=\frac{y-4}{3}=\frac{z-5}{4}\] lies in the plane \[4x+4y-kz-d=0\]. The values of k and d are |
| A. | 4, 8 |
| B. | -5, -3 |
| C. | 5, 3 |
| D. | - 4, - 8 |
| Answer» D. - 4, - 8 | |
| 6432. |
Let \[\mathbf{a}=\mathbf{i}-\mathbf{j},\,\,\mathbf{b}=\mathbf{j}-\mathbf{k},\,\,\mathbf{c}=\mathbf{k}-\mathbf{i}.\] If \[\mathbf{\hat{d}}\] is a unit vector such that \[\mathbf{a}\,.\,\mathbf{\hat{d}}=0=[\mathbf{b}\,\,\mathbf{c}\,\,\mathbf{\hat{d}}],\] then \[\mathbf{\hat{d}}\] is equal to [IIT 1995] |
| A. | \[\pm \frac{\mathbf{i}+\mathbf{j}-\mathbf{k}}{\sqrt{3}}\] |
| B. | \[\pm \frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}\] |
| C. | \[\pm \frac{\mathbf{i}+\mathbf{j}-2\mathbf{k}}{\sqrt{6}}\] |
| D. | \[\pm \,\,\mathbf{k}\] |
| Answer» D. \[\pm \,\,\mathbf{k}\] | |
| 6433. |
In the expansion of \[{{(x+a)}^{n}}\], the sum of odd terms is P and sum of even terms is Q, then the value of \[({{P}^{2}}-{{Q}^{2}})\] will be [RPET 1997; Pb. CET 1998] |
| A. | \[{{({{x}^{2}}+{{a}^{2}})}^{n}}\] |
| B. | \[{{({{x}^{2}}-{{a}^{2}})}^{n}}\] |
| C. | \[{{(x-a)}^{2n}}\] |
| D. | \[{{(x+a)}^{2n}}\] |
| Answer» C. \[{{(x-a)}^{2n}}\] | |
| 6434. |
In triangle \[ABC\], if \[\angle A=45{}^\circ ,\] \[\angle B=75{}^\circ \], then \[a+c\sqrt{2}\] = [IIT 1988] |
| A. | 0 |
| B. | 1 |
| C. | b |
| D. | 2b |
| Answer» E. | |
| 6435. |
The area enclosed within the curve \[|x|+|y|=1\]is [RPET 1990, 1997; IIT 1981; UPSEAT 2003] |
| A. | \[\sqrt{2}\] |
| B. | 1 |
| C. | \[\sqrt{3}\] |
| D. | 2 |
| Answer» E. | |
| 6436. |
\[\int_{{}}^{{}}{\frac{x-1}{{{(x+1)}^{3}}}{{e}^{x}}\ dx=}\] [IIT 1983; MP PET 1990] |
| A. | \[\frac{-{{e}^{x}}}{{{(x+1)}^{2}}}+c\] |
| B. | \[\frac{{{e}^{x}}}{{{(x+1)}^{2}}}+c\] |
| C. | \[\frac{{{e}^{x}}}{{{(x+1)}^{3}}}+c\] |
| D. | \[\frac{-{{e}^{x}}}{{{(x+1)}^{3}}}+c\] |
| Answer» C. \[\frac{{{e}^{x}}}{{{(x+1)}^{3}}}+c\] | |
| 6437. |
The lines \[\frac{x-a+d}{\alpha -\delta }=\frac{y-a}{\alpha }=\frac{z-a-d}{\alpha +\delta }\] and \[\frac{x-b+c}{\beta -\gamma }=\frac{y-b}{\beta }=\frac{z-b-c}{\beta +\gamma }\] are coplanar and then equation to the plane in which they lie, is |
| A. | \[x+y+z=0\] |
| B. | \[x-y+z=0\] |
| C. | \[x-2y+z=0\] |
| D. | \[x+y-2z=0\] |
| Answer» D. \[x+y-2z=0\] | |
| 6438. |
The volume of the tetrahedron, whose vertices are given by the vectors \[-\mathbf{i}+\mathbf{j}+\mathbf{k},\,\,\mathbf{i}-\mathbf{j}+\mathbf{k}\] and \[\mathbf{i}+\mathbf{j}-\mathbf{k}\]with reference to the fourth vertex as origin, is |
| A. | \[\frac{5}{3}\]cubic unit |
| B. | \[\frac{2}{3}\] cubic unit |
| C. | \[\frac{3}{5}\]cubic unit |
| D. | None of these |
| Answer» C. \[\frac{3}{5}\]cubic unit | |
| 6439. |
Sum of odd terms is A and sum of even terms is B in the expansion \[{{(x+a)}^{n}},\]then [RPET 1987; UPSEAT 2004] |
| A. | \[AB=\frac{1}{4}{{(x-a)}^{2n}}-{{(x+a)}^{2n}}\] |
| B. | \[2AB={{(x+a)}^{2n}}-{{(x-a)}^{2n}}\] |
| C. | \[4AB={{(x+a)}^{2n}}-{{(x-a)}^{2n}}\] |
| D. | None of these |
| Answer» D. None of these | |
| 6440. |
In a triangle, the length of the two larger sides are 10 cm and 9 cm respectively. If the angles of the triangle are in A.P., then the length of the third side in cm can be [MP PET 1990, 2001; IIT 1987; DCE 2001] |
| A. | \[5-\sqrt{6}\]only |
| B. | \[5+\sqrt{6}\]only |
| C. | \[5-\sqrt{6}\]or \[5+\sqrt{6}\] |
| D. | Neither\[5-\sqrt{6}\]nor \[5+\sqrt{6}\] |
| Answer» D. Neither\[5-\sqrt{6}\]nor \[5+\sqrt{6}\] | |
| 6441. |
The diagonals of a parallelogram \[PQRS\]are along the lines \[x+3y=4\]and \[6x-2y=7\]. Then \[PQRS\] must be a [IIT 1998] |
| A. | Rectangle |
| B. | Square |
| C. | Cyclic quadrilateral |
| D. | Rhombus |
| Answer» E. | |
| 6442. |
The area bounded by the angle bisectors of the lines \[{{x}^{2}}-{{y}^{2}}+2y=1\] and the line \[x+y=3\], is [IIT Screening 2004] |
| A. | 2 |
| B. | 3 |
| C. | 4 |
| D. | 6 |
| Answer» B. 3 | |
| 6443. |
The circumcentre of the triangle formed by the lines \[xy+2x+2y+4=0\] and \[x+y+2=0\] [EAMCET 1994] |
| A. | (0, 0) |
| B. | (-2, - 2) |
| C. | (-1, -1) |
| D. | (-1, -2) |
| Answer» D. (-1, -2) | |
| 6444. |
The solution of the equation \[\frac{{{x}^{2}}{{d}^{2}}y}{d{{x}^{2}}}=\ln x,\] when \[x=1\], \[y=0\] and \[\frac{dy}{dx}=-1\] is [Orissa JEE 2003] |
| A. | \[\frac{1}{2}{{(\ln x)}^{2}}+\ln x\] |
| B. | \[\frac{1}{2}{{(\ln x)}^{2}}-\ln x\] |
| C. | \[-\frac{1}{2}{{(\ln x)}^{2}}+\ln x\] |
| D. | \[-\frac{1}{2}{{(\ln x)}^{2}}-\ln x\] |
| Answer» E. | |
| 6445. |
The value of \[\int{{{\sec }^{3}}x\,\,dx}\] will be [UPSEAT 1999] |
| A. | \[\frac{1}{2}\left[ \,\sec x\tan x+\log (\sec x+\tan x) \right]\] |
| B. | \[\frac{1}{3}\left[ \,\sec x\tan x+\log (\sec x+\tan x) \right]\] |
| C. | \[\frac{1}{4}\left[ \,\sec x\tan x+\log (\sec x+\tan x) \right]\] |
| D. | \[\frac{1}{8}\left[ \,\sec x\tan x+\log (\sec x+\tan x) \right]\] |
| Answer» B. \[\frac{1}{3}\left[ \,\sec x\tan x+\log (\sec x+\tan x) \right]\] | |
| 6446. |
If \[\underset{x\to a}{\mathop{\lim }}\,\frac{{{a}^{x}}-{{x}^{a}}}{{{x}^{x}}-{{a}^{a}}}=-1\], then [EAMCET 2003] |
| A. | \[a=1\] |
| B. | \[a=0\] |
| C. | \[a=e\] |
| D. | None of these |
| Answer» B. \[a=0\] | |
| 6447. |
If \[\alpha \,(\mathbf{a}\times \mathbf{b})+\beta \,(\mathbf{b}\times \mathbf{c})+\gamma \,(\mathbf{c}\times \mathbf{a})=\mathbf{0}\] and at least one of the numbers \[\alpha ,\,\,\beta \] and \[\gamma \] is non-zero, then the vectors a, b and c are |
| A. | Perpendicular |
| B. | Parallel |
| C. | Coplanar |
| D. | None of these |
| Answer» D. None of these | |
| 6448. |
If \[{{C}_{r}}\] stands for \[^{n}{{C}_{r}}\], the sum of the given series\[\frac{2(n/2)!(n/2)!}{n!}[C_{0}^{2}-2C_{1}^{2}+3C_{2}^{2}-.....+{{(-1)}^{n}}(n+1)C_{n}^{2}]\], Where n is an even positive integer, is [IIT 1986] |
| A. | 0 |
| B. | \[{{(-1)}^{n/2}}(n+1)\] |
| C. | \[{{(-1)}^{n}}(n+2)\] |
| D. | \[{{(-1)}^{n/2}}(n+2)\] |
| Answer» E. | |
| 6449. |
If the perpendicular AD divides the base of the triangle ABC such that BD, CD and AD are in the ratio 2, 3 and 6, then angle A is equal to [MP PET 1993] |
| A. | \[\frac{\pi }{2}\] |
| B. | \[\frac{\pi }{3}\] |
| C. | \[\frac{\pi }{4}\] |
| D. | \[\frac{\pi }{6}\] |
| Answer» D. \[\frac{\pi }{6}\] | |
| 6450. |
A pair of straight lines drawn through the origin form with the line \[2x+3y=6\]an isosceles right angled triangle, then the lines and the area of the triangle thus formed is [Roorkee 1993] |
| A. | \[x-5y=0\]\[5x+y=0\]\[\Delta =\frac{36}{13}\] |
| B. | \[3x-y=0\]\[x+3y=0\]\[\Delta =\frac{12}{17}\] |
| C. | \[5x-y=0\]\[x+5y=0\]\[\Delta =\frac{13}{5}\] |
| D. | None of these |
| Answer» B. \[3x-y=0\]\[x+3y=0\]\[\Delta =\frac{12}{17}\] | |