MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 4301. |
The formation of \[S{{O}_{3}}\] takes place according to the following reaction, \[2S{{O}_{2}}+{{O}_{2}}\]⇌ \[2S{{O}_{3}}\]; \[\Delta H=-45.2\ kcal\]The formation of \[S{{O}_{3}}\] is favoured by [UPSEAT 2004] |
| A. | Increasing in temperature |
| B. | Removal of oxygen |
| C. | Increase of volume |
| D. | Increasing of pressure |
| Answer» E. | |
| 4302. |
In the reaction, \[{{A}_{2}}(g)+4{{B}_{2}}(g)\]⇌ \[2A{{B}_{4}}(g)\] \[\Delta H |
| A. | Low temperature, high pressure |
| B. | High temperature, low pressure |
| C. | Low temperature, low pressure |
| D. | High temperature, high pressure |
| Answer» B. High temperature, low pressure | |
| 4303. |
Consider the following reversible reaction at equilibrium, \[2{{H}_{2}}{{O}_{(g)}}\] ⇌ \[2{{H}_{2(g)}}+{{O}_{2(g)}}\]; \[\Delta H=241.7\,kJ\] Which one of the following changes in conditions will lead to maximum decomposition of \[{{H}_{2}}{{O}_{(g)}}\] [Kerala PMT 2004] |
| A. | Increasing both temperature and pressure |
| B. | Decreasing temperature and increasing pressure |
| C. | Increasing temperature and decreasing pressure |
| D. | Increasing temperature at constant pressure |
| Answer» D. Increasing temperature at constant pressure | |
| 4304. |
If the equilibrium constant of the reaction \[2HI\] ⇌ \[{{H}_{2}}+{{I}_{2}}\] is 0.25, then the equilibrium constant of the reaction \[{{H}_{2}}+{{I}_{2}}\]⇌ \[2HI\] would be [MP PMT 1989, 95] |
| A. | 1.0 |
| B. | 2.0 |
| C. | 3.0 |
| D. | 4.0 |
| Answer» E. | |
| 4305. |
For the reaction, \[C{{O}_{(g)}}+C{{l}_{2(g)}}\]⇌ \[COC{{l}_{2(g)}}\] the \[{{K}_{p}}/{{K}_{c}}\] is equal to [AIEEE 2004] |
| A. | \[\sqrt{RT}\] |
| B. | \[RT\] |
| C. | \[1/RT\] |
| D. | \[1.0\] |
| Answer» D. \[1.0\] | |
| 4306. |
Of the following which change will shift the reaction towards the product \[{{I}_{2}}(g)\]⇌\[2I(g),\ \Delta H_{r}^{0}(298K)=+150\ kJ\] [AIIMS 2004] |
| A. | Increase in concentration of l |
| B. | Decrease in concentration of \[{{I}_{2}}\] |
| C. | Increase in temperature |
| D. | Increase in total pressure |
| Answer» D. Increase in total pressure | |
| 4307. |
The chemical equilibrium of a reversible reaction is not influenced by [KCET 2004] |
| A. | Pressure |
| B. | Catalyst |
| C. | Concentration of the reactants |
| D. | Temperature |
| Answer» C. Concentration of the reactants | |
| 4308. |
In the manufacture of ammonia by Haber's process, \[{{N}_{2(g)}}+3{{H}_{2}}\] ⇌\[2N{{H}_{3(g)}}+92.3kJ\], which of the following conditions is unfavourable [KCET 2004] |
| A. | Increasing the temperature |
| B. | Increasing the pressure |
| C. | Reducing the temperature |
| D. | Removing ammonia as it is formed |
| Answer» B. Increasing the pressure | |
| 4309. |
If equilibrium constant for reaction \[2AB\]⇌\[{{A}_{2}}+{{B}_{2}}\], is 49, then the equilibrium constant for reaction AB ⇌ \[\frac{1}{2}{{A}_{2}}+\frac{1}{2}{{B}_{2}}\], will be [EAMCET 1998; MP PMT 2003] |
| A. | 7 |
| B. | 20 |
| C. | 49 |
| D. | 21 |
| Answer» B. 20 | |
| 4310. |
For \[{{N}_{2}}+3{{H}_{2}}\]⇌\[2N{{H}_{3}}\] equilibrium constant is k then equilibrium constant for 2N2 + 6H2 ⇌ 4NH3 is [RPMT 2002] |
| A. | \[\sqrt{k}\] |
| B. | \[{{k}^{2}}\] |
| C. | \[k/2\] |
| D. | \[\sqrt{k\ +\ 1}\] |
| Answer» C. \[k/2\] | |
| 4311. |
A tenfold increase in pressure on the reaction \[{{N}_{2(g)}}\]\[+3{{H}_{2(g)}}\]⇌\[2N{{H}_{3(g)}}\] at equilibrium, makes \[{{K}_{p}}\] [MP PET 2003] |
| A. | Unchanged |
| B. | Two times |
| C. | Four times |
| D. | Ten times |
| Answer» B. Two times | |
| 4312. |
Value of \[{{K}_{p}}\]in the reaction \[MgC{{O}_{3(s)}}\]⇌\[Mg{{O}_{(s)}}\] \[+\,C{{O}_{2(g)}}\] is [CBSE PMT 2000; RPMT 2002] |
| A. | \[{{K}_{P}}={{P}_{CO}}_{2}\] |
| B. | \[{{K}_{P}}=Pc{{o}_{2}}\times \frac{Pc{{o}_{2}}\times {{P}_{MgO}}}{{{P}_{MgC{{O}_{3}}}}}\] |
| C. | \[K{}_{P}=\frac{Pc{{o}_{2}}\times {{P}_{MgO}}}{{{P}_{MgC{{O}_{3}}}}}\] |
| D. | \[{{K}_{P}}=\frac{{{P}_{MgC{{O}_{3}}}}}{{{P}_{C{{O}_{2}}}}\times {{P}_{MgO}}}\] |
| Answer» B. \[{{K}_{P}}=Pc{{o}_{2}}\times \frac{Pc{{o}_{2}}\times {{P}_{MgO}}}{{{P}_{MgC{{O}_{3}}}}}\] | |
| 4313. |
\[\Delta n\], the change in the number of moles for the reaction, \[{{C}_{12}}{{H}_{22}}{{O}_{11}}_{(s)}\]\[+12{{O}_{2(g)}}\] ⇌ \[12C{{O}_{2(g)}}\] \[+11{{H}_{2}}{{O}_{(l)}}\] at 25°C is [Pb. PMT 2002] |
| A. | 0 |
| B. | 2 |
| C. | 4 |
| D. | ? 1 |
| Answer» B. 2 | |
| 4314. |
\[C{{H}_{3}}COO{{H}_{(l)}}+{{C}_{2}}{{H}_{5}}O{{H}_{(l)}}\] ⇌ \[C{{H}_{3}}COO{{C}_{2}}{{H}_{5\,(l)}}+{{H}_{2}}{{O}_{(l)}}\] In the above reaction, one mole of each of acetic acid and alcohol are heated in the presence of little conc. \[{{H}_{2}}S{{O}_{4}}\]. On equilibrium being attained [CPMT 1985; MP PET 1992] |
| A. | 1 mole of ethyl acetate is formed |
| B. | 2 mole of ethyl acetate are formed |
| C. | 1/2 moles of ethyl acetate is formed |
| D. | 2/3 moles of ethyl acetate is formed |
| Answer» E. | |
| 4315. |
A chemical reaction was carried out at 300 K and 280 K. The rate constants were found to be K1 and K2 respectively. The energy of activation is \[\text{1}\text{.157}\times \text{1}{{\text{0}}^{\text{4}}}\ cal\ mol{{e}^{-1}}\] and \[R=1.987\ cal\]. Then [KCET 2002] |
| A. | \[{{K}_{2}}\approx 0.25{{K}_{1}}\] |
| B. | \[{{K}_{2}}\approx 0.5{{K}_{1}}\] |
| C. | \[{{K}_{2}}\approx 4{{K}_{1}}\] |
| D. | \[{{K}_{2}}\approx 2{{K}_{1}}\] |
| Answer» B. \[{{K}_{2}}\approx 0.5{{K}_{1}}\] | |
| 4316. |
In which of the following reactions, increase in the volume at constant temperature don?t affect the number of moles at equilibrium. [AIEEE 2002] |
| A. | \[2N{{H}_{3}}\]⇌ \[{{N}_{2}}+3{{H}_{2}}\] |
| B. | \[{{C}_{(g)}}\]\[+\ \frac{1}{2}\] \[{{O}_{2(g)}}\]\[\to \]\[C{{O}_{(g)}}\] |
| C. | \[{{H}_{2(g)}}\]+ \[{{O}_{2(g)}}\] \[\to \]\[{{H}_{2}}{{O}_{2(g)}}\] |
| D. | None of these |
| Answer» E. | |
| 4317. |
Some solid \[N{{H}_{4}}HS\] is placed in a flask containing 0.5 atm of \[N{{H}_{3}}\], what would be pressures of \[N{{H}_{3}}\] and \[{{H}_{2}}S\] when equilibrium is reached \[N{{H}_{4}}H{{S}_{(g)}}\] ⇌ \[N{{H}_{3(g)}}+{{H}_{2}}{{S}_{(g)}}\], \[{{K}_{p}}=0.11\] [UPSEAT 2001] |
| A. | 6.65 atm |
| B. | 0.665 atm |
| C. | 0.0665 atm |
| D. | 66.5 atm |
| Answer» C. 0.0665 atm | |
| 4318. |
If for \[{{H}_{2}}_{(g)}+\frac{1}{2}{{S}_{2(S)}}\]⇌\[{{H}_{2}}{{S}_{(g)}}\] and \[{{H}_{2(g)}}+B{{r}_{2(g)}}\]⇌\[2HB{{r}_{(g)}}\] The equilibrium constants are K1 and K2 respectively, the reaction \[B{{r}_{2}}_{(g)}+{{H}_{2}}{{S}_{(g)}}\]⇌\[2HB{{r}_{(g)}}+\frac{1}{2}{{S}_{2(S)}}\] would have equilibrium constant [MP PMT 2001] |
| A. | \[{{K}_{1}}\ \times \ {{K}_{2}}\] |
| B. | \[{{K}_{1}}/{{K}_{2}}\] |
| C. | \[{{K}_{2}}/{{K}_{1}}\] |
| D. | \[K_{2}^{2}/{{K}_{1}}\] |
| Answer» D. \[K_{2}^{2}/{{K}_{1}}\] | |
| 4319. |
For the reaction \[2N{{O}_{2(g)}}\]⇌\[2N{{O}_{(g)}}+{{O}_{2(g)}}\],\[{{K}_{c}}=1.8\times {{10}^{-6}}\] at 185°C. At 185°C the Kc for \[N{{O}_{(g)}}\]+ \[\frac{1}{2}{{O}_{2(g)}}\]⇌ \[N{{O}_{2(g)}}\] is [JIPMER 2001] |
| A. | \[1.95\times {{10}^{-3}}\] |
| B. | \[1.95\times {{10}^{3}}\] |
| C. | \[7.5\times {{10}^{2}}\] |
| D. | \[0.9\times {{10}^{6}}\] |
| Answer» D. \[0.9\times {{10}^{6}}\] | |
| 4320. |
A reversible reaction \[{{H}_{2}}+C{{l}_{2}}\]⇌\[2HCl\]is carries out in one litre flask. If the same reaction is carried out in two litre flask, the equilibrium constant will be [JIPMER 2001] |
| A. | Decreased |
| B. | Doubled |
| C. | Halved |
| D. | Same |
| Answer» E. | |
| 4321. |
The \[{{K}_{c}}\] for \[{{H}_{2(g)}}+{{I}_{2(g)}}\]⇌\[2H{{I}_{(g)}}\] is 64. If the volume of the container is reduced to one-half of its original volume, the value of the equilibrium constant will be [JIPMER 2001] |
| A. | + 28 |
| B. | 64 |
| C. | 32 |
| D. | 16 |
| Answer» C. 32 | |
| 4322. |
3.2 moles of hydrogen iodide were heated in a scaled bulb at 444°C till the equilibrium was reached. The degree of dissociation of HI at this temperature was found to be 22%. The number of moles of hydrogen iodide present at equilibrium are [MH CET 2001] |
| A. | 1.87 |
| B. | 2.496 |
| C. | 4.00 |
| D. | 2.00 |
| Answer» C. 4.00 | |
| 4323. |
If \[{{K}_{c}}\] is the equilibrium constant for the formation of \[N{{H}_{3}}\], the dissociation constant of ammonia under the same temperature will be [DPMT 2001] |
| A. | \[{{K}_{c}}\] |
| B. | \[\sqrt{{{K}_{c}}}\] |
| C. | \[K_{c}^{2}\] |
| D. | \[1/{{K}_{c}}\] |
| Answer» E. | |
| 4324. |
The relation between equilibrium constant \[{{K}_{p}}\] and \[{{K}_{c}}\] is [IIT 1994; MP PMT 1994; CPMT 1997; AMU 2000; RPMT 2000, 02;MP PET 2002; Kerala PMT 2002] |
| A. | \[{{K}_{c}}={{K}_{p}}\,{{(RT)}^{\Delta n}}\] |
| B. | \[{{K}_{p}}={{K}_{c}}{{(RT)}^{\Delta n}}\] |
| C. | \[{{K}_{p}}={{\left( \frac{{{K}_{c}}}{RT} \right)}^{\Delta n}}\] |
| D. | \[{{K}_{p}}-{{K}_{c}}={{(RT)}^{\Delta n}}\] |
| Answer» C. \[{{K}_{p}}={{\left( \frac{{{K}_{c}}}{RT} \right)}^{\Delta n}}\] | |
| 4325. |
At 490°C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be [KCET 2000] |
| A. | 20.0 |
| B. | 2.0 |
| C. | 0.2 |
| D. | 0.02 |
| Answer» E. | |
| 4326. |
In which of the following case Kp is less than Kc [AFMC 1997; Pb. PMT 2000] |
| A. | \[{{H}_{2}}+C{{l}_{2}}\]⇌\[2HCl\] |
| B. | \[2S{{O}_{2}}+{{O}_{2}}\]⇌\[2S{{O}_{3}}\] |
| C. | \[{{N}_{2}}+{{O}_{2}}\]⇌\[2NO\] |
| D. | \[PC{{l}_{5}}\]⇌\[PC{{l}_{3}}+C{{l}_{2}}\] |
| Answer» C. \[{{N}_{2}}+{{O}_{2}}\]⇌\[2NO\] | |
| 4327. |
A chemical reaction is catalyzed by a catalyst X. Hence X [AIIMS 2000] |
| A. | Reduces enthalpy of the reaction |
| B. | Decreases rate constant of the reaction |
| C. | Increases activation energy of the reaction |
| D. | Does not affect equilibrium constant of reaction |
| Answer» E. | |
| 4328. |
For the reversible reaction, \[{{N}_{2(g)}}+3{{H}_{2(g)}}\] ⇌\[2N{{H}_{3(g)}}\] at 500°C, the value of \[{{K}_{P}}\] is \[1.44\times {{10}^{-5}}\] when partial pressure is measured in atmospheres. The corresponding value of \[{{K}_{c}}\] with concentration in mole litre-1, is [IIT Screening 2000; Pb. CET 2004] |
| A. | \[1.44\times {{10}^{-5}}\]/\[{{\left( 0.082\times 500 \right)}^{-2}}\] |
| B. | \[1.44\times {{10}^{-5}}\]/\[{{\left( 8.314\times 773 \right)}^{-2}}\] |
| C. | \[1.44\times {{10}^{-5}}\]/\[{{\left( 0.082\times 773 \right)}^{2}}\] |
| D. | \[1.44\times {{10}^{-5}}\]/\[{{\left( 0.082\times 773 \right)}^{-2}}\] |
| Answer» E. | |
| 4329. |
For the gaseous phase reaction 2NO ⇌ \[{{N}_{2}}+{{O}_{2}}\,\,\,\,\Delta H{}^\circ =+\ 43.5\,\,kcal\,mo{{l}^{-1}}\] Which statement is correct [MH CET 1999] |
| A. | K varies with addition of NO |
| B. | K decrease as temperature decreases |
| C. | K Increases as temperature decreases |
| D. | K is independent of temperature |
| Answer» C. K Increases as temperature decreases | |
| 4330. |
The reaction between \[{{N}_{2}}\] and \[{{H}_{2}}\] to form ammonia has \[{{K}_{c}}=6\times {{10}^{-2}}\] at the temperature 500°C. The numerical value of \[{{K}_{p}}\] for this reaction is [UPSEAT 1999] |
| A. | \[1.5\times {{10}^{-5}}\] |
| B. | \[1.5\times {{10}^{5}}\]\[\] |
| C. | \[1.5\times {{10}^{-6}}\] |
| D. | \[1.5\times {{10}^{6}}\] |
| Answer» B. \[1.5\times {{10}^{5}}\]\[\] | |
| 4331. |
Which of the following statements regarding a chemical equilibrium is wrong [JIPMER 1999] |
| A. | An equilibrium can be shifted by altering the temperature or pressure |
| B. | An equilibrium is dynamic |
| C. | The same state of equilibrium is reached whether one starts with the reactants or the products |
| D. | The forward reaction is favoured by the addition of a catalyst |
| Answer» E. | |
| 4332. |
The equilibrium constant for the reaction \[{{N}_{2}}+3{{H}_{2}}\]⇌\[2N{{H}_{3}}\] is \[K,\] then the equilibrium constant for the equilibrium \[N{{H}_{3}}\]⇌\[\frac{1}{2}{{N}_{2}}+\frac{3}{2}{{H}_{2}}\] is [CBSE PMT 1996; UPSEAT 2001] |
| A. | \[1/K\] |
| B. | \[1/{{K}^{2}}\] |
| C. | \[\sqrt{K}\] |
| D. | \[\frac{1}{\sqrt{K}}\] |
| Answer» E. | |
| 4333. |
Which statement for equilibrium constant is true for the reaction \[A+B\]⇌\[C\] [CPMT 1997] |
| A. | Not changes with temperature |
| B. | Changes when catalyst is added |
| C. | Increases with temperature |
| D. | Changes with temperature |
| Answer» E. | |
| 4334. |
The value of \[{{K}_{p}}\] for the following reaction \[2{{H}_{2}}S(g)\]⇌\[2{{H}_{2}}(g)+{{S}_{2}}(g)\] is \[1.2\times {{10}^{-2}}\] at \[{{106.5}^{o}}C\]. The value of \[{{K}_{c}}\] for this reaction is [EAMCET 1997; AIIMS 1999; AFMC 2000; KCET 2001] |
| A. | \[1.2\times {{10}^{-2}}\] |
| B. | \[<1.2\times {{10}^{-2}}\] |
| C. | 83 |
| D. | \[>1.2\times {{10}^{-2}}\] |
| Answer» C. 83 | |
| 4335. |
For the reaction \[PC{{l}_{3}}(g)+C{{l}_{2}}(g)\] ⇌ \[PC{{l}_{5}}(g)\] at \[{{250}^{o}}C\], the value of \[{{K}_{c}}\] is 26, then the value of \[{{K}_{p}}\] on the same temperature will be [MNR 1990; MP PET 2001] |
| A. | 0.61 |
| B. | 0.57 |
| C. | 0.83 |
| D. | 0.46 |
| Answer» B. 0.57 | |
| 4336. |
\[2N{{O}_{2}}\]⇌\[2NO+{{O}_{2}};\,\,K=1.6\times {{10}^{-12}}\] \[NO+\frac{1}{2}{{O}_{2}}\]⇌\[N{{O}_{2}}{K}'=?\] [CPMT 1996] |
| A. | \[{K}'=\frac{1}{{{K}^{2}}}\] |
| B. | \[{K}'=\frac{1}{K}\] |
| C. | \[{K}'=\frac{1}{\sqrt{K}}\] |
| D. | None of these |
| Answer» D. None of these | |
| 4337. |
The equilibrium constant \[({{K}_{p}})\] for the reaction \[PC{{l}_{5}}(g)\to PC{{l}_{3}}(g)+C{{l}_{2}}(g)\] is 16. If the volume of the container is reduced to one half its original volume, the value of \[{{K}_{p}}\] for the reaction at the same temperature will be [KCET 1996] |
| A. | 32 |
| B. | 64 |
| C. | 16 |
| D. | 4 |
| Answer» D. 4 | |
| 4338. |
The equilibrium constant for the reversible reaction, \[{{N}_{2}}+3{{H}_{2}}\] ⇌ \[2N{{H}_{3}}\] is \[K\] and for the reaction \[\frac{1}{2}{{N}_{2}}+\frac{3}{2}{{H}_{2}}\] ⇌ \[N{{H}_{3}}\] the equilibrium constant is \[{K}'\]. \[K\] and \[{K}'\] will be related as [MP PET 1997] |
| A. | \[K={K}'\] |
| B. | \[{K}'=\sqrt{K}\] |
| C. | \[K=\sqrt{{{K}'}}\] |
| D. | \[K\times {K}'=1\] |
| Answer» C. \[K=\sqrt{{{K}'}}\] | |
| 4339. |
For which one of the following reactions \[{{K}_{p}}={{K}_{c}}\] [MP PET 1997] |
| A. | \[{{N}_{2}}+3{{H}_{2}}\]⇌\[2N{{H}_{3}}\] |
| B. | \[{{N}_{2}}+{{O}_{2}}\]⇌\[2NO\] |
| C. | \[PC{{l}_{5}}\]⇌\[PC{{l}_{3}}+C{{l}_{2}}\] |
| D. | \[2S{{O}_{3}}\]⇌\[2S{{O}_{2}}+{{O}_{2}}\] |
| Answer» C. \[PC{{l}_{5}}\]⇌\[PC{{l}_{3}}+C{{l}_{2}}\] | |
| 4340. |
For the reaction \[2N{{O}_{2(g)}}\]⇌ \[2N{{O}_{(g)}}+{{O}_{2(g)}}\] \[({{K}_{c}}=1.8\times {{10}^{-6}}\,\text{at}\,\,184{}^\circ C)\] \[(R=0.0831\,kJ/\,(mol.\,K))\] When \[{{K}_{p}}\] and \[{{K}_{c}}\] are compared at 184°C it is found that [AIEEE 2005] |
| A. | \[{{K}_{p}}\] is greater than \[{{K}_{c}}\] |
| B. | \[{{K}_{p}}\] is less than \[{{K}_{c}}\] |
| C. | \[{{K}_{p}}={{K}_{e}}\] |
| D. | Whether \[{{K}_{p}}\] is greater than, less than or equal to \[{{K}_{c}}\] depends upon the total gas pressure |
| Answer» B. \[{{K}_{p}}\] is less than \[{{K}_{c}}\] | |
| 4341. |
For reaction 2NOCl(g) ⇌ \[2NO(g)+C{{l}_{2}}(g)\], \[{{K}_{C}}\]at 427°C is \[3\times {{10}^{-6}}L\ mo{{l}^{-1}}\]. The value of \[{{K}_{P}}\] is nearly [AIIMS 2005] |
| A. | \[7.50\times {{10}^{-5}}\] |
| B. | \[2.50\times {{10}^{-5}}\] |
| C. | \[2.50\times {{10}^{-4}}\] |
| D. | \[1.75\times {{10}^{-4}}\] |
| Answer» E. | |
| 4342. |
In equilibrium \[C{{H}_{3}}COOH+{{H}_{2}}O\]⇌\[C{{H}_{3}}COO+H_{3}^{+}O\] The equilibrium constant may change when |
| A. | \[C{{H}_{3}}CO{{O}^{-}}\] are added |
| B. | \[C{{H}_{3}}COOH\] is added |
| C. | Catalyst is added |
| D. | Mixture is heated |
| Answer» E. | |
| 4343. |
For the following gaseous reaction \[{{H}_{2}}+{{I}_{2}}\]⇌ \[2HI\], the equilibrium constant [MP PMT 1996; MP PET/PMT 1998] |
| A. | \[{{K}_{p}}>{{K}_{c}}\] |
| B. | \[{{K}_{p}}<{{K}_{c}}\] |
| C. | \[{{K}_{p}}={{K}_{c}}\] |
| D. | \[{{K}_{p}}=1/{{K}_{c}}\] |
| Answer» D. \[{{K}_{p}}=1/{{K}_{c}}\] | |
| 4344. |
The equilibrium constant of the reaction \[{{H}_{2}}(g)+{{I}_{2}}(g)\] ⇌ \[2HI(g)\] is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be [MP PET 1996] |
| A. | 16 |
| B. | 32 |
| C. | 64 |
| D. | 128 |
| Answer» D. 128 | |
| 4345. |
Equilibrium constants \[{{K}_{1}}\]and \[{{K}_{2}}\]for the following equilibria \[NO(g)+\frac{1}{2}{{O}_{2}}\] \[\overset{{{K}_{1}}}{leftrightarrows}\] \[N{{O}_{2}}(g)\] and \[2N{{O}_{2}}(g)\] \[\overset{{{K}_{2}}}{leftrightarrows}\] \[2NO(g)+{{O}_{2}}(g)\] are related as [CBSE PMT 2005] |
| A. | \[{{K}_{2}}=\frac{1}{{{K}_{1}}}\] |
| B. | \[{{K}_{2}}=K_{1}^{2}\] |
| C. | \[{{K}_{2}}=\frac{{{K}_{1}}}{2}\] |
| D. | \[{{K}_{2}}=\frac{1}{K_{1}^{2}}\] |
| Answer» E. | |
| 4346. |
For the reaction \[PC{{l}_{5}}(g)\]⇌ \[PC{{l}_{3}}(g)+C{{l}_{2}}(g)\] [MP PET 1996] |
| A. | \[{{K}_{p}}={{K}_{c}}\] |
| B. | \[{{K}_{p}}={{K}_{c}}{{(RT)}^{-1}}\] |
| C. | \[{{K}_{p}}={{K}_{c}}(RT)\] |
| D. | \[{{K}_{p}}={{K}_{c}}{{(RT)}^{2}}\] |
| Answer» D. \[{{K}_{p}}={{K}_{c}}{{(RT)}^{2}}\] | |
| 4347. |
In which of the following reaction \[{{K}_{p}}>{{K}_{c}}\] [AFMC 1995] |
| A. | \[{{N}_{2}}+3{{H}_{2}}\] ⇌ \[2N{{H}_{3}}\] |
| B. | \[{{H}_{2}}+{{I}_{2}}\] ⇌\[2HI\] |
| C. | \[PC{{l}_{3}}+C{{l}_{2}}\] ⇌ \[PC{{l}_{5}}\] |
| D. | \[2S{{O}_{3}}\]⇌\[{{O}_{2}}+2S{{O}_{2}}\] |
| Answer» E. | |
| 4348. |
For the reaction \[{{H}_{2}}(g)+{{I}_{2}}(g)\]⇌ \[2HI(g)\] at \[721K\] the value of equilibrium constant \[({{K}_{c}})\] is 50. When the equilibrium concentration of both is \[0.5\,M\], the value of \[{{K}_{p}}\] under the same conditions will be [CBSE PMT 1990] |
| A. | 0.002 |
| B. | 0.2 |
| C. | 50.0 |
| D. | \[50/RT\] |
| Answer» D. \[50/RT\] | |
| 4349. |
For which of the following reactions \[{{K}_{p}}={{K}_{c}}\] [KCET 1991; IIT 1991; EAMCET 1992; AIIMS 1996; KCET 2000; AMU 2000] |
| A. | \[2NOCl(g)\]⇌\[2NO(g)+C{{l}_{2}}(g)\] |
| B. | \[{{N}_{2}}(g)+3{{H}_{2}}(g)\]⇌\[2N{{H}_{3}}(g)\] |
| C. | \[{{H}_{2}}(g)+C{{l}_{2}}(g)\] ⇌\[2HCl(g)\] |
| D. | \[{{N}_{2}}{{O}_{4}}(g)\] ⇌\[2N{{O}_{2}}(g)\] |
| Answer» D. \[{{N}_{2}}{{O}_{4}}(g)\] ⇌\[2N{{O}_{2}}(g)\] | |
| 4350. |
In which one of the following gaseous equilibria \[{{K}_{p}}\] is less than \[{{K}_{c}}\] [EAMCET 1989; MP PET 1994; Pb. PMT 2000; KCET 2001; CBSE PMT 2002] |
| A. | \[{{N}_{2}}{{O}_{4}}\]⇌ \[2N{{O}_{2}}\] |
| B. | \[2HI\]⇌\[{{H}_{2}}+{{I}_{2}}\] |
| C. | \[2S{{O}_{2}}+{{O}_{2}}\]⇌ \[2S{{O}_{3}}\] |
| D. | \[{{N}_{2}}+{{O}_{2}}\] ⇌ \[2NO\] |
| Answer» D. \[{{N}_{2}}+{{O}_{2}}\] ⇌ \[2NO\] | |