MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 4251. |
The equilibrium constant (Kc) for the reaction \[\text{HA}+\text{B}\]⇌\[\text{B}{{\text{H}}^{+}}+{{\text{A}}^{-}}\] is 100. If the rate constant for the forward reaction is 105, then rate constant for the backward reaction is [CBSE PMT 2002] |
| A. | \[{{10}^{7}}\] |
| B. | \[{{10}^{3}}\] |
| C. | \[{{10}^{-3}}\] |
| D. | \[{{10}^{-5}}\] |
| Answer» C. \[{{10}^{-3}}\] | |
| 4252. |
The rate of forward reaction is two times that of reverse reaction at a given temperature and identical concentration. Kequilibrium is [KCET 2002] |
| A. | 2.5 |
| B. | 2.0 |
| C. | 0.5 |
| D. | 1.5 |
| Answer» C. 0.5 | |
| 4253. |
In which of the following, the reaction proceeds towards completion [MNR 1990] |
| A. | \[K={{10}^{3}}\] |
| B. | \[K={{10}^{-2}}\] |
| C. | \[K=10\] |
| D. | \[K=1\] |
| Answer» B. \[K={{10}^{-2}}\] | |
| 4254. |
Change in volume of the system does not alter the number of moles in which of the following equilibrium [AIEEE 2002] |
| A. | \[{{N}_{2(g)}}+{{O}_{2(g)}}\]⇌ \[2N{{O}_{(g)}}\] |
| B. | \[PC{{l}_{5(g)}}\]⇌\[PC{{l}_{3(g)}}+C{{l}_{2(g)}}\] |
| C. | \[{{N}_{2(g)}}+3{{H}_{2}}_{(g)}\]⇌\[2N{{H}_{3(g)}}\] |
| D. | \[S{{O}_{2}}C{{l}_{2(g)}}\]⇌ \[S{{O}_{2(g)}}+C{{l}_{2(g)}}\] |
| Answer» B. \[PC{{l}_{5(g)}}\]⇌\[PC{{l}_{3(g)}}+C{{l}_{2(g)}}\] | |
| 4255. |
In a chemical reaction equilibrium is established when [MP PET 2001] |
| A. | Opposing reaction ceases |
| B. | Concentration of reactants and products are equal |
| C. | Velocity of opposing reaction is the same as that of forward reaction |
| D. | Reaction ceases to generate heat |
| Answer» D. Reaction ceases to generate heat | |
| 4256. |
For the reaction\[{{H}_{2}}+{{I}_{2}}=2HI\],the equilibrium concentration of \[{{H}_{2\,}},\,{{I}_{2}}\] and \[HI\] are 8.0, 3.0 and 28.0 mol per litre respectively, the equilibrium constant of the reaction is [BHU 2000; CBSE PMT 2001] |
| A. | 30.66 |
| B. | 32.66 |
| C. | 34.66 |
| D. | 36.66 |
| Answer» C. 34.66 | |
| 4257. |
15 moles of \[{{H}_{2}}\] and 5.2 moles of \[{{I}_{2}}\] are mixed and allowed to attain equilibrium at \[{{500}^{o}}C\]. At equilibrium, the concentration of \[HI\] is found to be 10 moles. The equilbrium constant for the formation of \[HI\] is [KCET 2005] |
| A. | 50 |
| B. | 15 |
| C. | 100 |
| D. | 25 |
| Answer» B. 15 | |
| 4258. |
In the reaction, \[A+B\]⇌\[2C\], at equilibrium, the concentration of A and B is \[0.20\,\,mol\,\,{{l}^{-1}}\] each and that of C was found to be \[0.60\,\,mol\,\,{{l}^{-1}}\]. The equilibrium constant of the reaction is [MH CET 2000] |
| A. | 2.4 |
| B. | 18 |
| C. | 4.8 |
| D. | 9 |
| Answer» E. | |
| 4259. |
For the equilibrium \[{{N}_{2}}+3{{H}_{2}}\]⇌\[2N{{H}_{3}},{{K}_{c}}\] at 1000K is \[2.37\times {{10}^{-3}}\]. If at equilibrium \[[{{N}_{2}}]=2M,\,[{{H}_{2}}]=3M\], the concentration of \[N{{H}_{3}}\] is [JIPMER 2000] |
| A. | 0.00358 M |
| B. | 0.0358 M |
| C. | 0.358 M |
| D. | 3.58 M |
| Answer» D. 3.58 M | |
| 4260. |
Equilibrium concentration of \[HI,\,{{I}_{2}}\] and \[{{H}_{2}}\] is \[0.7,\,0.1\] and \[0.1\,M\] respectively. The equilibrium constant for the reaction \[{{I}_{2}}+{{H}_{2}}\]⇌\[2HI\] is [JIPMER 2000] |
| A. | 36 |
| B. | 49 |
| C. | 0.49 |
| D. | 0.36 |
| Answer» C. 0.49 | |
| 4261. |
A 1 M solution of glucose reaches dissociation equilibrium according to equation given below \[6HCHO\]⇌\[{{C}_{6}}{{H}_{12}}{{O}_{6}}\]. What is the concentration of HCHO at equilibrium if equilibrium constant is \[6\times {{10}^{22}}\] [MP PMT 2000] |
| A. | \[1.6\times {{10}^{-8}}M\] |
| B. | \[3.2\times {{10}^{-6}}M\] |
| C. | \[3.2\times {{10}^{-4}}M\] |
| D. | \[1.6\times {{10}^{-4}}M\] |
| Answer» E. | |
| 4262. |
When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place \[{{A}_{(g)}}+{{B}_{(g)}}\]⇌\[2{{C}_{(g)}}\]. 1.5 moles of C are formed. The equilibrium constant for the reaction is [MP PMT 2000] |
| A. | 0.12 |
| B. | 0.25 |
| C. | 0.50 |
| D. | 4.0 |
| Answer» E. | |
| 4263. |
At a certain temp. 2HI ⇌ H2 + I2 Only 50% HI is dissociated at equilibrium. The equilibrium constant is [DCE 1999] |
| A. | 0.25 |
| B. | 1.0 |
| C. | 3.0 |
| D. | 0.50 |
| Answer» B. 1.0 | |
| 4264. |
On a given condition, the equilibrium concentration of \[HI,\,{{H}_{2}}\] and \[{{I}_{2}}\] are 0.80, 0.10 and 0.10 mole/litre. The equilibrium constant for the reaction \[{{H}_{2}}+{{I}_{2}}\] ⇌ \[2HI\] will be [MP PET 1986] |
| A. | 64 |
| B. | 12 |
| C. | 8 |
| D. | 0.8 |
| Answer» B. 12 | |
| 4265. |
The rate constant for forward and backward reactions of hydrolysis of ester are \[1.1\times {{10}^{-2}}\] and \[1.5\times {{10}^{-3}}\] per minute respectively. Equilibrium constant for the reaction is \[C{{H}_{3}}COO{{C}_{2}}{{H}_{5}}+{{H}_{2}}O\]⇌\[C{{H}_{3}}COOH\]\[+{{C}_{2}}{{H}_{5}}OH\] [AIIMS 1999] |
| A. | 4.33 |
| B. | 5.33 |
| C. | 6.33 |
| D. | 7.33 |
| Answer» E. | |
| 4266. |
At 3000 K the equilibrium pressures of CO2, CO and O2 are 0.6,0.4 and 0.2 atmospheres respectively. \[{{K}_{p}}\]for the reaction, \[2C{{O}_{2}}\]⇌\[2CO+{{O}_{2}}\] is [JIPMER 1999] |
| A. | 0.089 |
| B. | 0.0533 |
| C. | 0.133 |
| D. | 0.177 |
| Answer» B. 0.0533 | |
| 4267. |
An equilibrium mixture of the reaction \[2{{H}_{2}}S(g)\]⇌\[2{{H}_{2}}(g)+{{S}_{2}}(g)\] had 0.5 mole \[{{H}_{2}}S\], 0.10 mole \[{{H}_{2}}\] and 0.4 mole \[{{S}_{2}}\] in one litre vessel. The value of equilibrium constant \[(K)\] in mole litre-1 is [AIIMS 1998; IIT 1992; AFMC 1999; UPSEAT 2001] |
| A. | 0.004 |
| B. | 0.008 |
| C. | 0.016 |
| D. | 0.160 |
| Answer» D. 0.160 | |
| 4268. |
A reaction is \[A+B\to C+D\]. Initially we start with equal concentration of \[A\] and \[B\]. At equilibrium we find the moles of \[C\] is two times of \[A\]. What is the equilibrium constant of the reaction [BHU 1998; KCET 2000] |
| A. | 4 |
| B. | 2 |
| C. | \[1/4\] |
| D. | \[1/2\] |
| Answer» B. 2 | |
| 4269. |
In a \[500ml\] capacity vessel \[CO\] and \[C{{l}_{2}}\] are mixed to form \[COC{{l}_{2}}\]. At equilibrium, it contains 0.2 moles of \[COC{{l}_{2}}\] and 0.1 mole of each of \[CO\] and \[C{{O}_{2}}\]. The equilibrium constant \[{{K}_{c}}\] for the reaction \[CO+C{{l}_{2}}\] ⇌\[COC{{l}_{2}}\] is [CBSE PMT 1998] |
| A. | 5 |
| B. | 10 |
| C. | 15 |
| D. | 20 |
| Answer» C. 15 | |
| 4270. |
In the reaction \[A+2B\]⇌\[2C\], if 2 moles of \[A,\,\,3.0\] moles of \[B\] and 2.0 moles of \[C\] are placed in a \[2.0\,\,l\] flask and the equilibrium concentration of \[C\] is 0.5 mole/\[l\]. The equilibrium constant \[({{K}_{c}})\] for the reaction is [KCET 1996] |
| A. | 0.073 |
| B. | 0.147 |
| C. | 0.05 |
| D. | 0.026 |
| Answer» D. 0.026 | |
| 4271. |
An amount of solid \[N{{H}_{4}}HS\] is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm. pressure. Ammonium hydrogen sulphide decomposes to yield \[N{{H}_{3}}\] and \[{{H}_{2}}S\] gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm. The equilibrium constant for \[N{{H}_{4}}HS\] decomposition at this temperature is [AIEEE 2005] |
| A. | 0.30 |
| B. | 0.18 |
| C. | 0.17 |
| D. | 0.11 |
| Answer» E. | |
| 4272. |
The equilibrium concentration of \[X,\,Y\] and \[Y{{X}_{2}}\] are 4, 2 and 2 moles respectively for the equilibrium \[2X+Y\]⇌\[Y{{X}_{2}}\]. The value of \[{{K}_{c}}\] is [EAMCET 1990] |
| A. | 0.625 |
| B. | 0.0625 |
| C. | 6.25 |
| D. | 0.00625 |
| Answer» C. 6.25 | |
| 4273. |
28 g of \[{{N}_{2}}\] and 6 g of \[{{H}_{2}}\] were kept at \[{{400}^{o}}C\] in 1 litre vessel, the equilibrium mixture contained \[27.54g\] of \[N{{H}_{3}}\]. The approximate value of \[{{K}_{c}}\] for the above reaction can be (in \[mol{{e}^{-2}}\,\,litr{{e}^{2}}\]) [CBSE PMT 1990] |
| A. | 75 |
| B. | 50 |
| C. | 25 |
| D. | 100 |
| Answer» B. 50 | |
| 4274. |
4 moles of A are mixed with 4 moles of B. At equilibrium for the reaction \[A+B\]⇌\[C+D\], 2 moles of C and D are formed. The equilibrium constant for the reaction will be [CPMT 1992] |
| A. | \[\frac{1}{4}\] |
| B. | \[\frac{1}{2}\] |
| C. | 1 |
| D. | 4 |
| Answer» D. 4 | |
| 4275. |
In a chemical equilibrium, the rate constant of the backward reaction is \[7.5\times {{10}^{-4}}\] and the equilibrium constant is 1.5. So the rate constant of the forward reaction is [KCET 1989] |
| A. | \[5\times {{10}^{-4}}\] |
| B. | \[2\times {{10}^{-3}}\] |
| C. | \[1.125\times {{10}^{-3}}\] |
| D. | \[9.0\times {{10}^{-4}}\] |
| Answer» D. \[9.0\times {{10}^{-4}}\] | |
| 4276. |
A mixture of 0.3 mole of \[{{H}_{2}}\] and 0.3 mole of \[{{I}_{2}}\] is allowed to react in a 10 litre evacuated flask at \[{{500}^{o}}C\]. The reaction is \[{{H}_{2}}+{{I}_{2}}\]⇌ \[2HI\], the \[K\] is found to be 64. The amount of unreacted \[{{I}_{2}}\] at equilibrium is [KCET 1990] |
| A. | 0.15 mole |
| B. | 0.06 mole |
| C. | 0.03 mole |
| D. | 0.2 mole |
| Answer» C. 0.03 mole | |
| 4277. |
A quantity of \[PC{{l}_{5}}\] was heated in a 10 litre vessel at \[{{250}^{o}}C\]; \[PC{{l}_{5}}(g)\]⇌ \[PC{{l}_{3}}(g)+C{{l}_{2}}(g)\]. At equilibrium the vessel contains 0.1 mole of \[PC{{l}_{5}}\,0.20\] mole of \[PC{{l}_{3}}\] and 0.2 mole of \[C{{l}_{2}}\]. The equilibrium constant of the reaction is [KCET 1993, 2001; MP PMT 2003] |
| A. | 0.02 |
| B. | 0.05 |
| C. | 0.04 |
| D. | 0.025 |
| Answer» D. 0.025 | |
| 4278. |
For the reaction \[2S{{O}_{2}}+{{O}_{2}}\] ⇌ \[2S{{O}_{3}}\], the units of \[{{K}_{c}}\] are [CPMT 1990] |
| A. | \[litre\,mol{{e}^{-1}}\] |
| B. | \[mol\,\,litr{{e}^{-1}}\] |
| C. | \[{{(mol\,\,litr{{e}^{-1}})}^{2}}\] |
| D. | \[{{(litre\,\,mol{{e}^{-1}})}^{2}}\] |
| Answer» B. \[mol\,\,litr{{e}^{-1}}\] | |
| 4279. |
In the gas phase reaction, \[{{C}_{2}}{{H}_{4}}+{{H}_{2}}\]⇌ \[{{C}_{2}}{{H}_{6}}\], the equilibrium constant can be expressed in units of [CBSE PMT 1992; Pb. PMT 1999] |
| A. | \[litr{{e}^{-1}}\,mol{{e}^{-1}}\] |
| B. | \[litre\,mol{{e}^{-1}}\] |
| C. | \[mol{{e}^{2}}\,litr{{e}^{-2}}\] |
| D. | \[mole\,litr{{e}^{-1}}\] |
| Answer» C. \[mol{{e}^{2}}\,litr{{e}^{-2}}\] | |
| 4280. |
If in the reaction \[{{N}_{2}}{{O}_{4}}=2N{{O}_{2}},\,\alpha \] is that part of \[{{N}_{2}}{{O}_{4}}\] which dissociates, then the number of moles at equilibrium will be [MP PET 1990; MH CET 2001; KCET 2005] |
| A. | 3 |
| B. | 1 |
| C. | \[{{(1-\alpha )}^{2}}\] |
| D. | \[(1+\alpha )\] |
| Answer» E. | |
| 4281. |
The suitable expression for the equilibrium constant of the reaction \[2N{{O}_{(g)}}+C{{l}_{2(g)}}\] ⇌ \[2NOC{{l}_{(g)}}\] is [CPMT 1983, 87] |
| A. | \[{{K}_{c}}=\frac{[2NOCl]}{[2NO]\,[C{{l}_{2}}]}\] |
| B. | \[{{K}_{c}}=\frac{{{[NOCl]}^{2}}}{{{[NO]}^{2}}[C{{l}_{2}}]}\] |
| C. | \[{{K}_{c}}=\frac{{{[NOCl]}^{2}}}{[NO]{{[C{{l}_{2}}]}^{2}}}\] |
| D. | \[{{K}_{c}}=\frac{{{[NOCl]}^{2}}}{{{[NO]}^{2}}{{[C{{l}_{2}}]}^{2}}}\] |
| Answer» C. \[{{K}_{c}}=\frac{{{[NOCl]}^{2}}}{[NO]{{[C{{l}_{2}}]}^{2}}}\] | |
| 4282. |
For the reaction \[{{N}_{2(g)}}+3{{H}_{2(g)}}\] ⇌ \[2N{{H}_{3(g)}}\], the correct expression of equilibrium constant K is [CPMT 1984, 2000] |
| A. | \[K=\frac{{{[N{{H}_{3}}]}^{2}}}{[{{N}_{2}}]{{[{{H}_{2}}]}^{3}}}\] |
| B. | \[K=\frac{[{{N}_{2}}]{{[{{H}_{2}}]}^{3}}}{{{[N{{H}_{3}}]}^{2}}}\] |
| C. | \[K=\frac{2[N{{H}_{3}}]}{[{{N}_{2}}]\times 3[{{H}_{2}}]}\] |
| D. | \[K=\frac{[{{N}_{2}}]\times 3[{{H}_{2}}]}{2[N{{H}_{3}}]}\] |
| Answer» B. \[K=\frac{[{{N}_{2}}]{{[{{H}_{2}}]}^{3}}}{{{[N{{H}_{3}}]}^{2}}}\] | |
| 4283. |
In a chemical equilibrium \[A+B\] ⇌ \[C+D\], when one mole each of the two reactants are mixed, 0.6 mole each of the products are formed. The equilibrium constant calculated is [CBSE PMT 1989] |
| A. | 1 |
| B. | 0.36 |
| C. | 2.25 |
| D. | 4/9 |
| Answer» D. 4/9 | |
| 4284. |
In the reversible reaction \[A+B\]⇌ \[C+D\], the concentration of each C and D at equilibrium was 0.8 mole/liter, then the equilibrium constant \[{{K}_{c}}\] will be [MP PET 1986] |
| A. | 6.4 |
| B. | 0.64 |
| C. | 1.6 |
| D. | 16.0 |
| Answer» E. | |
| 4285. |
The unit of equilibrium constant K for the reaction \[A+B\]⇌ \[C\] would be [CPMT 1987] |
| A. | \[mol\,\,litr{{e}^{-1}}\] |
| B. | \[litre\,\,mo{{l}^{-1}}\] |
| C. | \[mol\,\,litre\] |
| D. | Dimensionless |
| Answer» C. \[mol\,\,litre\] | |
| 4286. |
In a reaction \[A+B\]⇌ \[C+D\], the concentrations of A, B, C and D (in moles/litre) are 0.5, 0.8, 0.4 and 1.0 respectively. The equilibrium constant is [BHU 1981] |
| A. | 0.1 |
| B. | 1.0 |
| C. | 10 |
| D. | \[\infty \] |
| Answer» C. 10 | |
| 4287. |
Concentration of a gas is expressed in the following terms in the calculation of equilibrium constant [EAMCET 1982] |
| A. | No. of molecules per litre |
| B. | No. of grams per litre |
| C. | No. of gram equivalent per litre |
| D. | No. of molecules equivalent per litre |
| Answer» B. No. of grams per litre | |
| 4288. |
The decomposition of \[{{N}_{2}}{{O}_{4}}\] to \[N{{O}_{2}}\] is carried out at \[280K\] in chloroform. When equilibrium has been established, 0.2 mol of \[{{N}_{2}}{{O}_{4}}\] and \[2\times {{10}^{-3}}\] mol of \[N{{O}_{2}}\] are present in 2 litre solution. The equilibrium constant for reaction \[{{N}_{2}}{{O}_{4}}\] ⇌ \[2N{{O}_{2}}\] is [AIIMS 1984] |
| A. | \[1\times {{10}^{-2}}\] |
| B. | \[2\times {{10}^{-3}}\] |
| C. | \[1\times {{10}^{-5}}\] |
| D. | \[2\times {{10}^{-5}}\] |
| Answer» D. \[2\times {{10}^{-5}}\] | |
| 4289. |
Unit of equilibrium constant for the reversible reaction \[{{H}_{2}}+{{I}_{2}}\] ⇌ \[2HI\] is [DPMT 1984] |
| A. | \[mo{{l}^{-1}}\,litre\] |
| B. | \[mo{{l}^{-2}}\,litre\] |
| C. | \[mol\,\,litr{{e}^{-1}}\] |
| D. | None of these |
| Answer» E. | |
| 4290. |
For which of the following reactions does the equilibrium constant depend on the units of concentration [AIIMS 1983] |
| A. | \[N{{O}_{(g)}}\] ⇌ \[\frac{1}{2}{{N}_{2(g)}}+\frac{1}{2}{{O}_{2(g)}}\] |
| B. | \[Z{{n}_{(s)}}+Cu_{(aq)}^{2+}\] ⇌ \[C{{u}_{(s)}}+Zn_{(aq)}^{2+}\] |
| C. | \[{{C}_{2}}{{H}_{5}}O{{H}_{(l)}}+C{{H}_{3}}COO{{H}_{(l)}}\]⇌\[C{{H}_{3}}COO{{C}_{2}}{{H}_{5(l)}}+{{H}_{2}}{{O}_{(l)}}\] (Reaction carried in an inert solvent) |
| D. | \[COC{{l}_{2(g)}}\] ⇌ \[C{{O}_{(g)}}+C{{l}_{2\,(g)}}\] |
| Answer» E. | |
| 4291. |
2 moles of \[PC{{l}_{5}}\] were heated in a closed vessel of 2 litre capacity. At equilibrium, 40% of \[PC{{l}_{5}}\] is dissociated into \[PC{{l}_{3}}\] and \[C{{l}_{2}}\]. The value of equilibrium constant is [MP PMT 1989; RPMT 2000; UPSEAT 2004; Kerala CET 2005] |
| A. | 0.266 |
| B. | 0.53 |
| C. | 2.66 |
| D. | 5.3 |
| Answer» B. 0.53 | |
| 4292. |
For the reaction \[A+2B\] ⇌ \[C\], the expression for equilibrium constant is [MNR 1987; MP PMT 1999; UPSEAT 2002] |
| A. | \[\frac{[A]{{[B]}^{2}}}{[C]}\] |
| B. | \[\frac{[A][B]}{[C]}\] |
| C. | \[\frac{[C]}{[A]{{[B]}^{2}}}\] |
| D. | \[\frac{[C]}{2[B][A]}\] |
| Answer» D. \[\frac{[C]}{2[B][A]}\] | |
| 4293. |
Partial pressures of A, B, C and D on the basis of gaseous system \[A+2B\] ⇌ \[C+3D\] are A = 0.20; B = 0.10; C = 0.30 and D = 0.50 atm. The numerical value of equilibrium constant is [CPMT 1987] |
| A. | 11.25 |
| B. | 18.75 |
| C. | 5 |
| D. | 3.75 |
| Answer» C. 5 | |
| 4294. |
For the system \[3A+2B\] ⇌ \[C\], the expression for equilibrium constant is [NCERT 1981; CPMT 1989; MP PMT 1990; RPMT 1999; Pb. PMT 2002; Pb. CET 2002] |
| A. | \[\frac{[3A][2B]}{C}\] |
| B. | \[\frac{[C]}{[3A][2B]}\] |
| C. | \[\frac{{{[A]}^{3}}{{[B]}^{2}}}{[C]}\] |
| D. | \[\frac{[C]}{{{[A]}^{3}}{{[B]}^{2}}}\] |
| Answer» E. | |
| 4295. |
In the reaction \[{{N}_{2}}(g)+3{{H}_{2}}\] ⇌ \[2N{{H}_{3}}(g)\], the value of the equilibrium constant depends on [CPMT 1990; AIIMS 1991; MP PET 1996] |
| A. | Volume of the reaction vessel |
| B. | Total pressure of the system |
| C. | The initial concentration of nitrogen and hydrogen |
| D. | The temperature |
| Answer» E. | |
| 4296. |
\[N{{H}_{4}}COON{{H}_{2(s)}}\] ⇌ \[2N{{H}_{3(g)}}+C{{O}_{2(g)}}\] if equilibrium pressure is 3 atm for the above reaction \[{{K}_{p}}\] for the reaction is [DPMT 2005] |
| A. | 4 |
| B. | 27 |
| C. | 4/27 |
| D. | 1/27 |
| Answer» C. 4/27 | |
| 4297. |
\[{{A}_{(g)}}+3{{B}_{(g)}}\] ⇌\[4{{C}_{(g)}}\]. Starting concentration of A is equal to B, equilibrium concentration of A and C are same. \[{{K}_{c}}=\] [Kerala CET 2005] |
| A. | 0.08 |
| B. | 0.8 |
| C. | 8 |
| D. | 80 |
| E. | 1/8 |
| Answer» D. 80 | |
| 4298. |
For the reaction \[{{N}_{2(g)}}+{{O}_{2(g)}}\] ⇌\[2N{{O}_{(g)}}\], the value of \[{{K}_{c}}\] at \[{{800}^{o}}C\] is 0.1. When the equilibrium concentrations of both the reactants is 0.5 mol, what is the value of \[{{K}_{p}}\] at the same temperature [KCET 2005] |
| A. | 0.5 |
| B. | 0.1 |
| C. | 0.01 |
| D. | 0.025 |
| Answer» C. 0.01 | |
| 4299. |
If equilibrium constants of reaction, \[{{N}_{2}}+{{O}_{2}}\]⇌ \[2NO\] is \[{{K}_{1}}\]and \[\]\[\frac{1}{2}{{N}_{2}}+\frac{1}{2}{{O}_{2}}\]⇌ \[NO\] is \[{{K}_{2}}\], then [BHU 2004] |
| A. | \[{{K}_{1}}={{K}_{2}}\] |
| B. | \[{{K}_{2}}=\sqrt{{{K}_{1}}}\] |
| C. | \[{{K}_{1}}=2{{K}_{2}}\] |
| D. | \[{{K}_{1}}=\frac{1}{2}{{K}_{2}}\] |
| Answer» C. \[{{K}_{1}}=2{{K}_{2}}\] | |
| 4300. |
What is the effect of increasing pressure on the dissociation of \[PC{{l}_{5}}\] according to the equation \[PC{{l}_{5(g)}}\]⇌ \[PC{{l}_{3(g)}}+C{{l}_{2(g)}}-x\ cal\] [UPSEAT 2004] |
| A. | Dissociation decreases |
| B. | Dissociation increases |
| C. | Dissociation does not change |
| D. | None of these |
| Answer» B. Dissociation increases | |