Explore topic-wise MCQs in UPSEE.

This section includes 395 Mcqs, each offering curated multiple-choice questions to sharpen your UPSEE knowledge and support exam preparation. Choose a topic below to get started.

1.

If \({\rm{y}} = {\sec ^{ - 1}}\left( {\frac{{{\rm{x}} + 1}}{{{\rm{x}} - 1}}} \right) + {\sin ^{ - 1}}\left( {\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}}} \right)\), then \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}}\) is equal to

A. 0
B. 1
C. \(\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}}\)
D. \(\frac{{{\rm{x}} + 1}}{{{\rm{x}} - 1}}\)
Answer» B. 1
2.

Let \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = \frac{{{\rm{a}}{{\rm{x}}^2} + {\rm{b}}{{\rm{y}}^2}}}{{{\rm{xy}}}}\), where a and b are constants. If \(\frac{{\partial {\rm{f}}}}{{\partial {\rm{x}}}} = \frac{{\partial {\rm{f}}}}{{\partial {\rm{y}}}}{\rm{\;}}\) at x = 1 and y = 2, then the relation between a and b is

A. \({\rm{a}} = \frac{{\rm{b}}}{4}\)
B. \({\rm{a}} = \frac{{\rm{b}}}{2}\)
C. a = 2b
D. a = 4b
Answer» E.
3.

If \(f\left( x \right) = \frac{{{x^3}}}{3} - \frac{{5{x^2}}}{2} + 6x + 7\) increases in the interval T and decreases in the interval S, then which one of the following is correct?

A. T = (-∞, 2) ∪ (3, ∞) and S = (2, 3)
B. T = ϕ and S = (-∞, ∞)
C. T = (-∞, ∞) and S = ϕ
D. T = (2, 3) and S = (-∞, 2) ∪ (3, ∞)
Answer» B. T = ϕ and S = (-∞, ∞)
4.

Find the differentiation of \({\cos ^{ - 1}}x\)

A. \(\frac{1}{{\sqrt {1 - {x^2}} }}\)
B. \(- \frac{1}{{\sqrt {1 - {x^2}} }}\)
C. \(\frac{1}{{1 + {x^2}}}\)
D. \(1 + {x^2}\)
Answer» C. \(\frac{1}{{1 + {x^2}}}\)
5.

If v = yz î + 3zx ĵ + z k̂, then curl v is

A. -3xî + yĵ + 2zk̂
B. 3xî – yĵ + 2zk̂
C. -3xî – yĵ – 2xk̂
D. 3xî + yĵ – 2zk̂
Answer» B. 3xî – yĵ + 2zk̂
6.

Change the order of integration in\(\mathop{\int }_{0}^{a}\mathop{\int }_{y}^{a}\frac{x}{{{x}^{2}}+{{y}^{2}}}dx~dy\)

A. \(\mathop{\int }_{0}^{a}\mathop{\int }_{0}^{x}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\)
B. \(\mathop{\int }_{0}^{a}\mathop{\int }_{x}^{a}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\)
C. \(\mathop{\int }_{x}^{a}\mathop{\int }_{0}^{y}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\)
D. \(\mathop{\int }_{x}^{a}\mathop{\int }_{y}^{a}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\)
Answer» B. \(\mathop{\int }_{0}^{a}\mathop{\int }_{x}^{a}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\)
7.

Each of four particles move along an x-axis. Their coordinates (in meters) as functions of time (in seconds) are given by1) particle 1: x (t) = 3.5 – 2.7 t32) particle 2: x (t) = 3.5 + 2.7 t33) particle 3: x (t) = 3.5 – 2.7 t24) particle 4: x (t) = 3.5 – 3.4t - 2.7 t2Which of these particles have constant acceleration?

A. All four
B. Only (1) and (2)
C. Only (2) and (3)
D. Only (3) and (4)
Answer» E.
8.

Differentiate {-log (log x), x > 1} with respect to x

A. -1 / (x log x)
B. 1 / (log x)
C. 1 / x
D. x log x
Answer» B. 1 / (log x)
9.

A function f(x) = 1 - x2 + x3 is defined in the closed interval [-1, 1]. The value of x, in the open interval (-1, 1) for which the mean value theorem is satisfied, is

A. -1/2
B. -1/3
C. 1/3
D. 1/2
Answer» C. 1/3
10.

If \(u = \log \left( {\frac{{{x^2} + {y^2}}}{{x + y}}} \right)\) then \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial x}}\) is equal to –

A. 0
B. 1
C. u
D. eu
Answer» C. u
11.

\(\mathop {\lim }\limits_{x \to 0} \frac{{\cos x - 1}}{{\sin x - x}}\) is equal to

A. Undefined
B.
C. 1
D. 0
Answer» C. 1
12.

If \(\int \frac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{2/3}}}=x\cdot f\left( x \right)\cdot {{\left( 1+{{x}^{6}} \right)}^{1/3}}+C\), where C is a constant of integration, then the function f(x) is equal to:

A. \(\frac{3}{{{x}^{2}}}\)
B. \(-\frac{1}{6{{x}^{3}}}\)
C. \(-\frac{1}{2{{x}^{2}}}\)
D. \(-\frac{1}{2{{x}^{3}}}\)
Answer» E.
13.

A 2 m ladder leans against a vertical wall. If the top of the ladder begins to slide down the wall at the rate 25 cm/sec, then the rate (in cm/sec) at which the bottom of the ladder slides away from the wall on the horizontal ground when the top of the ladder is 1 m above the ground is:

A. 25√3
B. \(\frac{25}{\sqrt{3}}\)
C. 25/3
D. 25
Answer» C. 25/3
14.

If \({\rm{y}} = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {1 + \sin {\rm{x}}} + \sqrt {1 - \sin {\rm{x}}} }}{{\sqrt {1 + \sin {\rm{x}}} - \sqrt {1 - \sin {\rm{x}}} }}} \right],\) where \(0 < {\rm{x}} < \frac{{\rm{\pi }}}{2}\), then \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}}\) is equal to

A. \(\frac{1}{2}\)
B. 2
C. sin x + cos x
D. sin x – cos x
Answer» B. 2
15.

Consider the shaded triangle region P shown in the figureWhat is \(\iint_P xydx dy \ ?\)

A. \(\frac{1}{6}\)
B. \(\frac{2}{9}\)
C. \(\frac{1}{16}\)
D. 1
Answer» B. \(\frac{2}{9}\)
16.

First derivative of cot(x) with respect to x is

A. tan(x)
B. -tan(x
C. -cosec2(x)
D. -cosec(x)cot(x
Answer» D. -cosec(x)cot(x
17.

If for non-zero x, if \(af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 25\) where a ≠ b then \(\mathop \smallint \limits_1^2 f\left( x \right)dx\) is

A. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {ln\;2 - 25} \right) + \frac{{47b}}{2}} \right]\)
B. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {2\;ln\;2 - 25} \right) - \frac{{47b}}{2}} \right]\)
C. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {2\;ln\;2 - 25} \right) + \frac{{47b}}{2}} \right]\)
D. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {ln\;2 - 25} \right) - \frac{{47b}}{2}} \right]\)
Answer» B. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {2\;ln\;2 - 25} \right) - \frac{{47b}}{2}} \right]\)
18.

Evaluate: \(\smallint {e^{\tan x}}{\sec ^2}x\;dx\)

A. \({- \ e^{\tan x^2}} + C\)
B. \({- \ e^{\tan x}} + C\)
C. \({e^{\tan x^2}} + C\)
D. \({e^{\tan x}} + C\)
Answer» E.
19.

If f : R → R f is a differentiable function and \(\begin{array}{*{20}{c}}{{\rm{}}f\left( 2 \right) = 6,{\rm{\;then\;}}\mathop {lim}\limits_{x \to 2} \mathop \smallint \nolimits_6^{f\left( x \right)}\frac{{2tdt}}{{\left( {x - 2} \right)}}}\end{array}\) is

A. 24f' (2)
B. 2f' (2)
C. 0
D. 12f' (2)
Answer» E.
20.

Let f: [0, 2] → R be a twice differentiable function such that f''(x) > 0, for all x ∈ (0, 2). If ϕ(x) = f(x) + f(2 – x), then ϕ is:

A. Increasing on (0, 1) and decreasing on (1, 2)
B. Decreasing on (0, 2)
C. Decreasing on (0, 1) and increasing on (1, 2)
D. Increasing on (0, 2)
Answer» D. Increasing on (0, 2)
21.

If \(V = \frac{{10}}{{{r^2}}}sin\theta .cos\varphi \), the electric flux density at \(\left( {2,\frac{\pi }{2},0} \right)\) is

A. \(32.1~\overrightarrow {{a_r}} ~pC/{m^2}\)
B. \(22.1~\overrightarrow {{a_r}}~ pC/{m^2}\)
C. \(10.2~\overrightarrow {{a_r}} ~pC/{m^2}\)
D. \(5.8~\overrightarrow {{a_r}} ~pC/{m^2}\)
Answer» C. \(10.2~\overrightarrow {{a_r}} ~pC/{m^2}\)
22.

Find the angle between two vectors a and b with magnitudes √3 and 2 respectively having a.b = √6

A. 45°
B. 90°
C. 180°
D. 30°
Answer» B. 90°
23.

\(\int {\frac{{dx}}{{(\sin x + 4)(\sin x - 1)}} = \frac{A}{{\tan \frac{x}{2} - 1}} + B{{\tan }^{ - 1}}} \left( {f(x)} \right) + c\), then

A. \(A = \frac{1}{5}\), \(B = -\frac{2}{{5\sqrt {15} }}\), \(f(x) = \frac{{4\tan x + 3}}{{\sqrt {15} }}\)
B. \(A = \frac{-1}{5}\), \(B = \frac{1}{{\sqrt {15} }}\), \(f(x) = \frac{{4\tan \left( {\frac{x}{2}} \right) + 1}}{{\sqrt {15} }}\)
C. \(A = \frac{2}{5}\), \(B = -\frac{2}{{5\sqrt {5} }}\), \(f(x) = \frac{{4\tan x + 1}}{{\sqrt {5} }}\)
D. \(A = \frac{2}{5}\), \(B = -\frac{2}{{\sqrt {15} }}\), \(f(x) = \frac{{4\tan \left( {\frac{x}{2}} \right) + 1}}{{\sqrt {5} }}\)
Answer» D. \(A = \frac{2}{5}\), \(B = -\frac{2}{{\sqrt {15} }}\), \(f(x) = \frac{{4\tan \left( {\frac{x}{2}} \right) + 1}}{{\sqrt {5} }}\)
24.

In which one of the following intervals is the function increasing?

A. (-2, 3)
B. (3, 4)
C. (-3, -2)
D. (-4, -3)
Answer» B. (3, 4)
25.

In which one of the following intervals is the function decreasing?

A. (-2, 3)
B. (3, 4)
C. (4, 6)
D. (6, 9)
Answer» C. (4, 6)
26.

If \(f\left( x \right)=\int \frac{5{{x}^{8}}+7{{x}^{6}}}{{{\left( {{x}^{2}}+1+2{{x}^{7}} \right)}^{2}}}dx\), (x ≥ 0), and f(0) = 0, then the value of f(1) is:

A. \(-\frac{1}{2}\)
B. \(-\frac{1}{4}\)
C. \(\frac{1}{2}\)
D. \(\frac{1}{4}\)
Answer» E.
27.

If x is real, then the minimum value of \(\frac {x^2 - x + 1}{x^2 + x + 1}\) is

A. \(\frac 1 2\)
B. 2
C. 3
D. \(\frac 1 3\)
Answer» E.
28.

If \(I_1 = \int^{\frac {\pi} 2}_0 \sin^2 xdx\) and \(I_2 = \int^{\frac \pi 2}_{0} \frac {\sin^2 x}{1 + 3^x}dx,\) then:

A. \(I_2 - I_1 = \frac \pi 2 - \log 3\)
B. \(I_1 + I_2 = \frac \pi 2 + \log 3\)
C. I1 + I2 = 0
D. I2 - I1 = 0
Answer» E.
29.

\(\displaystyle\int \left\lbrace \dfrac{(\log x - 1)}{ 1 + (\log x)^2}\right\rbrace^2dx\) is equal to

A. \(\rm \dfrac{xe^x}{1+x^2}+C\)
B. \(\rm \dfrac{x}{(\log x)^2 +1}+C\)
C. \(\rm \dfrac{\log x}{(\log x)^2 + 1}+C\)
D. \(\rm \dfrac{x}{x^2 + 1}+C\)
Answer» C. \(\rm \dfrac{\log x}{(\log x)^2 + 1}+C\)
30.

For two non-zero vectors A̅ and B̅, if (A̅ + B̅) is perpendicular to (A̅ - B̅), then

A. The magnitude of A̅ is twice the magnitude of B̅
B. The magnitude of A̅ is half the magnitude of B̅
C. A̅ and B̅ cannot be orthogonal
D. The magnitudes of A̅ and B̅ are equal
Answer» E.
31.

If y = log10 x + logx 10 + logx x + log10 10 then what is \({\left( {\frac{{dy}}{{dx}}} \right)_{x = 10}}\) equal to?

A. 10
B. 2
C. 1
D. 0
Answer» E.
32.

\(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{x + \sin x}}{x}} \right)\) equals to

A. -∞
B. 0
C. 1
D.
Answer» D. ∞
33.

Let f be a differentiable function defined for all x ∈ R such that f(x3) = x5 for all x ∈ R, x ≠ 0. Then the value of \(\dfrac{df}{dx} (8)\) is:

A. 5/3
B. None of these
C. 20
D. 20/3
Answer» E.
34.

Consider the following:1. f(2) = f(1) – f(0)2. f”(2) – 2f’(1) = 12Which of the above is/are correct?

A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2
Answer» D. Neither 1 nor 2
35.

A man of height 6 feet walks at uniform rate of 3kmph away from the lamp post of 15 feet height. The rate at which the length of his shadow changes is

A. 2 kmph, decreases
B. 2 kmph increases
C. 4.5 kmph, increases
D. 4.5 kmph decreases
Answer» C. 4.5 kmph, increases
36.

If y = cos2 x2, find \(\frac {dy}{dx}\)

A. 4x2 sin x2 cos x2
B. -4x cos x2 sin x2
C. 2x sin x2 cos x2
D. -2x cos x2 sin x2
Answer» C. 2x sin x2 cos x2
37.

Evaluate\(\int\limits_0^1 {\frac{{\ln (x + 1)}}{{{x^2} + 1}}} ~dx\)

A. \(\pi \ln \sqrt 2\)
B. \(\frac{\pi }{8}\ln \sqrt 2\)
C. \(2\pi \ln \sqrt 2\)
D. \( \ln \sqrt 2\)
Answer» C. \(2\pi \ln \sqrt 2\)
38.

If a function is continuous at a point

A. The limit of the function may not exist at the point
B. The function must be derivable at the point
C. The limit of the function at the point tends to infinity
D. The limit must exist at the point and the value of limit should be same as the value of the function at that point
Answer» E.
39.

If 0 < a < b, then \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} \frac{{\left| {\rm{x}} \right|}}{{\rm{x}}}{\rm{dx}}\) is equal to

A. |b| - |a|
B. |a|- |b|
C. \(\frac{{\left| {\rm{b}} \right|}}{{\left| {\rm{a}} \right|}}\)
D. 0
Answer» B. |a|- |b|
40.

Consider the following statements:Fourier series of any periodic function X(t) can be obtained if1. \(\mathop \smallint \limits_0^1 \left| {x\left( t \right)} \right|dt < \infty \)2. Finite number of discontinous exist within finite time interval t.Which of the above statements is/are correct ?

A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2
Answer» C. Both 1 and 2
41.

For each t > 0, if \({\rm{\Phi }}\left( {x,t} \right) = \frac{1}{{\sqrt {4\pi t} }}{e^{ - {x^2}/4t}}\) solves the heat equation, then for t > 0

A. \(\mathop \smallint \limits_{ - \infty }^\infty {\rm{\Phi }}\left( {x,t} \right)dt = 0\)
B. \(\mathop \smallint \limits_{ - \infty }^\infty {\rm{\Phi }}\left( {x,t} \right)dt = 1\)
C. \(\mathop \smallint \limits_{ - \infty }^\infty {\rm{\Phi }}\left( {x,t} \right)dt = \infty\)
D. not defined
Answer» C. \(\mathop \smallint \limits_{ - \infty }^\infty {\rm{\Phi }}\left( {x,t} \right)dt = \infty\)
42.

Given a vector \(\vec u = \frac{1}{3}\left( { - {y^3}̂ i + {x^3}̂ j + {z^3}̂ k} \right)\)and n̂ as the unit normal vector to the surface of the hemisphere (x2 + y2 + z2 = 1; z ≥ 0), the value of integral \(\smallint \left( {\;\nabla \times u} \right) \bullet \hat n\;dS\) evaluated on the curved surface of the hemisphere S is

A. – π/2
B. π/3
C. π/2
D. π
Answer» D. π
43.

If \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) and f(f(x)) = x then

A. d = a
B. d = - a
C. a = b = c = d = 1
D. a = c = 1
Answer» C. a = b = c = d = 1
44.

Find the equation of tangent and normal for f(x) = x2 – 4x + 10 at x = 5.

A. 6y + x = 95 and 6x – y = 15
B. x + 6y = 95 and 6x – y = 15
C. x - 6y = - 85 and 6x = y = 15
D. x - 6y = 85 and 6x = y = -15
Answer» B. x + 6y = 95 and 6x – y = 15
45.

If \(f\left( x \right) = \frac{{{{\cos }^2}x}}{{1 + {{\sin }^2}x}}\), then the value \(f\left( {\frac{\pi }{4}} \right) - 3f'\left( {\frac{\pi }{4}} \right)\) is

A. 0
B. 1
C. 3
D. 4
Answer» D. 4
46.

Equation of the line normal to function \(f\left( X \right) = {\left( {X - 8} \right)^{\frac{2}{3}}} + 1\) at P(0,5) is

A. y = 3x - 5
B. y = 3x + 5
C. 3y = x + 15
D. 3y = x - 15
Answer» C. 3y = x + 15
47.

If 7x3 + 3y3 + 4x2 + 6x = 100, then (dy/dx)(2, 4) is

A. \(-\frac{55}{72}\)
B. \(-\frac{53}{72}\)
C. \(-\frac{59}{72}\)
D. \(-\frac{61}{72}\)
Answer» C. \(-\frac{59}{72}\)
48.

If the centre of a circle is (-6, 8) and it passes through the origin, then equation to its tangent at the origin is

A. 2y = x
B. 4y = 3x
C. 3y = 4x
D. 3x + 4y = 0
Answer» C. 3y = 4x
49.

\(\mathop \smallint \limits_{ - 1}^2 x\left| x \right|\;dx\) is equal to

A. 0
B. 2/3
C. 5/3
D. 7/3
Answer» E.
50.

Consider the hemi-spherical tank of radius 13 m as shown in the figure (not drawn to scale). What is the volume of water (in m3) when the depth of water at the centre of the tank is 6 m?

A. 78 π
B. 468 π
C. 156 π
D. 396 π
Answer» E.