

MCQOPTIONS
Saved Bookmarks
This section includes 395 Mcqs, each offering curated multiple-choice questions to sharpen your UPSEE knowledge and support exam preparation. Choose a topic below to get started.
1. |
If \({\rm{y}} = {\sec ^{ - 1}}\left( {\frac{{{\rm{x}} + 1}}{{{\rm{x}} - 1}}} \right) + {\sin ^{ - 1}}\left( {\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}}} \right)\), then \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}}\) is equal to |
A. | 0 |
B. | 1 |
C. | \(\frac{{{\rm{x}} - 1}}{{{\rm{x}} + 1}}\) |
D. | \(\frac{{{\rm{x}} + 1}}{{{\rm{x}} - 1}}\) |
Answer» B. 1 | |
2. |
Let \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = \frac{{{\rm{a}}{{\rm{x}}^2} + {\rm{b}}{{\rm{y}}^2}}}{{{\rm{xy}}}}\), where a and b are constants. If \(\frac{{\partial {\rm{f}}}}{{\partial {\rm{x}}}} = \frac{{\partial {\rm{f}}}}{{\partial {\rm{y}}}}{\rm{\;}}\) at x = 1 and y = 2, then the relation between a and b is |
A. | \({\rm{a}} = \frac{{\rm{b}}}{4}\) |
B. | \({\rm{a}} = \frac{{\rm{b}}}{2}\) |
C. | a = 2b |
D. | a = 4b |
Answer» E. | |
3. |
If \(f\left( x \right) = \frac{{{x^3}}}{3} - \frac{{5{x^2}}}{2} + 6x + 7\) increases in the interval T and decreases in the interval S, then which one of the following is correct? |
A. | T = (-∞, 2) ∪ (3, ∞) and S = (2, 3) |
B. | T = ϕ and S = (-∞, ∞) |
C. | T = (-∞, ∞) and S = ϕ |
D. | T = (2, 3) and S = (-∞, 2) ∪ (3, ∞) |
Answer» B. T = ϕ and S = (-∞, ∞) | |
4. |
Find the differentiation of \({\cos ^{ - 1}}x\) |
A. | \(\frac{1}{{\sqrt {1 - {x^2}} }}\) |
B. | \(- \frac{1}{{\sqrt {1 - {x^2}} }}\) |
C. | \(\frac{1}{{1 + {x^2}}}\) |
D. | \(1 + {x^2}\) |
Answer» C. \(\frac{1}{{1 + {x^2}}}\) | |
5. |
If v = yz î + 3zx ĵ + z k̂, then curl v is |
A. | -3xî + yĵ + 2zk̂ |
B. | 3xî – yĵ + 2zk̂ |
C. | -3xî – yĵ – 2xk̂ |
D. | 3xî + yĵ – 2zk̂ |
Answer» B. 3xî – yĵ + 2zk̂ | |
6. |
Change the order of integration in\(\mathop{\int }_{0}^{a}\mathop{\int }_{y}^{a}\frac{x}{{{x}^{2}}+{{y}^{2}}}dx~dy\) |
A. | \(\mathop{\int }_{0}^{a}\mathop{\int }_{0}^{x}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\) |
B. | \(\mathop{\int }_{0}^{a}\mathop{\int }_{x}^{a}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\) |
C. | \(\mathop{\int }_{x}^{a}\mathop{\int }_{0}^{y}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\) |
D. | \(\mathop{\int }_{x}^{a}\mathop{\int }_{y}^{a}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\) |
Answer» B. \(\mathop{\int }_{0}^{a}\mathop{\int }_{x}^{a}\frac{x}{{{x}^{2}}+{{y}^{2}}}dy~dx\) | |
7. |
Each of four particles move along an x-axis. Their coordinates (in meters) as functions of time (in seconds) are given by1) particle 1: x (t) = 3.5 – 2.7 t32) particle 2: x (t) = 3.5 + 2.7 t33) particle 3: x (t) = 3.5 – 2.7 t24) particle 4: x (t) = 3.5 – 3.4t - 2.7 t2Which of these particles have constant acceleration? |
A. | All four |
B. | Only (1) and (2) |
C. | Only (2) and (3) |
D. | Only (3) and (4) |
Answer» E. | |
8. |
Differentiate {-log (log x), x > 1} with respect to x |
A. | -1 / (x log x) |
B. | 1 / (log x) |
C. | 1 / x |
D. | x log x |
Answer» B. 1 / (log x) | |
9. |
A function f(x) = 1 - x2 + x3 is defined in the closed interval [-1, 1]. The value of x, in the open interval (-1, 1) for which the mean value theorem is satisfied, is |
A. | -1/2 |
B. | -1/3 |
C. | 1/3 |
D. | 1/2 |
Answer» C. 1/3 | |
10. |
If \(u = \log \left( {\frac{{{x^2} + {y^2}}}{{x + y}}} \right)\) then \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial x}}\) is equal to – |
A. | 0 |
B. | 1 |
C. | u |
D. | eu |
Answer» C. u | |
11. |
\(\mathop {\lim }\limits_{x \to 0} \frac{{\cos x - 1}}{{\sin x - x}}\) is equal to |
A. | Undefined |
B. | ∞ |
C. | 1 |
D. | 0 |
Answer» C. 1 | |
12. |
If \(\int \frac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{2/3}}}=x\cdot f\left( x \right)\cdot {{\left( 1+{{x}^{6}} \right)}^{1/3}}+C\), where C is a constant of integration, then the function f(x) is equal to: |
A. | \(\frac{3}{{{x}^{2}}}\) |
B. | \(-\frac{1}{6{{x}^{3}}}\) |
C. | \(-\frac{1}{2{{x}^{2}}}\) |
D. | \(-\frac{1}{2{{x}^{3}}}\) |
Answer» E. | |
13. |
A 2 m ladder leans against a vertical wall. If the top of the ladder begins to slide down the wall at the rate 25 cm/sec, then the rate (in cm/sec) at which the bottom of the ladder slides away from the wall on the horizontal ground when the top of the ladder is 1 m above the ground is: |
A. | 25√3 |
B. | \(\frac{25}{\sqrt{3}}\) |
C. | 25/3 |
D. | 25 |
Answer» C. 25/3 | |
14. |
If \({\rm{y}} = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {1 + \sin {\rm{x}}} + \sqrt {1 - \sin {\rm{x}}} }}{{\sqrt {1 + \sin {\rm{x}}} - \sqrt {1 - \sin {\rm{x}}} }}} \right],\) where \(0 < {\rm{x}} < \frac{{\rm{\pi }}}{2}\), then \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}}\) is equal to |
A. | \(\frac{1}{2}\) |
B. | 2 |
C. | sin x + cos x |
D. | sin x – cos x |
Answer» B. 2 | |
15. |
Consider the shaded triangle region P shown in the figureWhat is \(\iint_P xydx dy \ ?\) |
A. | \(\frac{1}{6}\) |
B. | \(\frac{2}{9}\) |
C. | \(\frac{1}{16}\) |
D. | 1 |
Answer» B. \(\frac{2}{9}\) | |
16. |
First derivative of cot(x) with respect to x is |
A. | tan(x) |
B. | -tan(x |
C. | -cosec2(x) |
D. | -cosec(x)cot(x |
Answer» D. -cosec(x)cot(x | |
17. |
If for non-zero x, if \(af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 25\) where a ≠ b then \(\mathop \smallint \limits_1^2 f\left( x \right)dx\) is |
A. | \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {ln\;2 - 25} \right) + \frac{{47b}}{2}} \right]\) |
B. | \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {2\;ln\;2 - 25} \right) - \frac{{47b}}{2}} \right]\) |
C. | \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {2\;ln\;2 - 25} \right) + \frac{{47b}}{2}} \right]\) |
D. | \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {ln\;2 - 25} \right) - \frac{{47b}}{2}} \right]\) |
Answer» B. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {2\;ln\;2 - 25} \right) - \frac{{47b}}{2}} \right]\) | |
18. |
Evaluate: \(\smallint {e^{\tan x}}{\sec ^2}x\;dx\) |
A. | \({- \ e^{\tan x^2}} + C\) |
B. | \({- \ e^{\tan x}} + C\) |
C. | \({e^{\tan x^2}} + C\) |
D. | \({e^{\tan x}} + C\) |
Answer» E. | |
19. |
If f : R → R f is a differentiable function and \(\begin{array}{*{20}{c}}{{\rm{}}f\left( 2 \right) = 6,{\rm{\;then\;}}\mathop {lim}\limits_{x \to 2} \mathop \smallint \nolimits_6^{f\left( x \right)}\frac{{2tdt}}{{\left( {x - 2} \right)}}}\end{array}\) is |
A. | 24f' (2) |
B. | 2f' (2) |
C. | 0 |
D. | 12f' (2) |
Answer» E. | |
20. |
Let f: [0, 2] → R be a twice differentiable function such that f''(x) > 0, for all x ∈ (0, 2). If ϕ(x) = f(x) + f(2 – x), then ϕ is: |
A. | Increasing on (0, 1) and decreasing on (1, 2) |
B. | Decreasing on (0, 2) |
C. | Decreasing on (0, 1) and increasing on (1, 2) |
D. | Increasing on (0, 2) |
Answer» D. Increasing on (0, 2) | |
21. |
If \(V = \frac{{10}}{{{r^2}}}sin\theta .cos\varphi \), the electric flux density at \(\left( {2,\frac{\pi }{2},0} \right)\) is |
A. | \(32.1~\overrightarrow {{a_r}} ~pC/{m^2}\) |
B. | \(22.1~\overrightarrow {{a_r}}~ pC/{m^2}\) |
C. | \(10.2~\overrightarrow {{a_r}} ~pC/{m^2}\) |
D. | \(5.8~\overrightarrow {{a_r}} ~pC/{m^2}\) |
Answer» C. \(10.2~\overrightarrow {{a_r}} ~pC/{m^2}\) | |
22. |
Find the angle between two vectors a and b with magnitudes √3 and 2 respectively having a.b = √6 |
A. | 45° |
B. | 90° |
C. | 180° |
D. | 30° |
Answer» B. 90° | |
23. |
\(\int {\frac{{dx}}{{(\sin x + 4)(\sin x - 1)}} = \frac{A}{{\tan \frac{x}{2} - 1}} + B{{\tan }^{ - 1}}} \left( {f(x)} \right) + c\), then |
A. | \(A = \frac{1}{5}\), \(B = -\frac{2}{{5\sqrt {15} }}\), \(f(x) = \frac{{4\tan x + 3}}{{\sqrt {15} }}\) |
B. | \(A = \frac{-1}{5}\), \(B = \frac{1}{{\sqrt {15} }}\), \(f(x) = \frac{{4\tan \left( {\frac{x}{2}} \right) + 1}}{{\sqrt {15} }}\) |
C. | \(A = \frac{2}{5}\), \(B = -\frac{2}{{5\sqrt {5} }}\), \(f(x) = \frac{{4\tan x + 1}}{{\sqrt {5} }}\) |
D. | \(A = \frac{2}{5}\), \(B = -\frac{2}{{\sqrt {15} }}\), \(f(x) = \frac{{4\tan \left( {\frac{x}{2}} \right) + 1}}{{\sqrt {5} }}\) |
Answer» D. \(A = \frac{2}{5}\), \(B = -\frac{2}{{\sqrt {15} }}\), \(f(x) = \frac{{4\tan \left( {\frac{x}{2}} \right) + 1}}{{\sqrt {5} }}\) | |
24. |
In which one of the following intervals is the function increasing? |
A. | (-2, 3) |
B. | (3, 4) |
C. | (-3, -2) |
D. | (-4, -3) |
Answer» B. (3, 4) | |
25. |
In which one of the following intervals is the function decreasing? |
A. | (-2, 3) |
B. | (3, 4) |
C. | (4, 6) |
D. | (6, 9) |
Answer» C. (4, 6) | |
26. |
If \(f\left( x \right)=\int \frac{5{{x}^{8}}+7{{x}^{6}}}{{{\left( {{x}^{2}}+1+2{{x}^{7}} \right)}^{2}}}dx\), (x ≥ 0), and f(0) = 0, then the value of f(1) is: |
A. | \(-\frac{1}{2}\) |
B. | \(-\frac{1}{4}\) |
C. | \(\frac{1}{2}\) |
D. | \(\frac{1}{4}\) |
Answer» E. | |
27. |
If x is real, then the minimum value of \(\frac {x^2 - x + 1}{x^2 + x + 1}\) is |
A. | \(\frac 1 2\) |
B. | 2 |
C. | 3 |
D. | \(\frac 1 3\) |
Answer» E. | |
28. |
If \(I_1 = \int^{\frac {\pi} 2}_0 \sin^2 xdx\) and \(I_2 = \int^{\frac \pi 2}_{0} \frac {\sin^2 x}{1 + 3^x}dx,\) then: |
A. | \(I_2 - I_1 = \frac \pi 2 - \log 3\) |
B. | \(I_1 + I_2 = \frac \pi 2 + \log 3\) |
C. | I1 + I2 = 0 |
D. | I2 - I1 = 0 |
Answer» E. | |
29. |
\(\displaystyle\int \left\lbrace \dfrac{(\log x - 1)}{ 1 + (\log x)^2}\right\rbrace^2dx\) is equal to |
A. | \(\rm \dfrac{xe^x}{1+x^2}+C\) |
B. | \(\rm \dfrac{x}{(\log x)^2 +1}+C\) |
C. | \(\rm \dfrac{\log x}{(\log x)^2 + 1}+C\) |
D. | \(\rm \dfrac{x}{x^2 + 1}+C\) |
Answer» C. \(\rm \dfrac{\log x}{(\log x)^2 + 1}+C\) | |
30. |
For two non-zero vectors A̅ and B̅, if (A̅ + B̅) is perpendicular to (A̅ - B̅), then |
A. | The magnitude of A̅ is twice the magnitude of B̅ |
B. | The magnitude of A̅ is half the magnitude of B̅ |
C. | A̅ and B̅ cannot be orthogonal |
D. | The magnitudes of A̅ and B̅ are equal |
Answer» E. | |
31. |
If y = log10 x + logx 10 + logx x + log10 10 then what is \({\left( {\frac{{dy}}{{dx}}} \right)_{x = 10}}\) equal to? |
A. | 10 |
B. | 2 |
C. | 1 |
D. | 0 |
Answer» E. | |
32. |
\(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{x + \sin x}}{x}} \right)\) equals to |
A. | -∞ |
B. | 0 |
C. | 1 |
D. | ∞ |
Answer» D. ∞ | |
33. |
Let f be a differentiable function defined for all x ∈ R such that f(x3) = x5 for all x ∈ R, x ≠ 0. Then the value of \(\dfrac{df}{dx} (8)\) is: |
A. | 5/3 |
B. | None of these |
C. | 20 |
D. | 20/3 |
Answer» E. | |
34. |
Consider the following:1. f(2) = f(1) – f(0)2. f”(2) – 2f’(1) = 12Which of the above is/are correct? |
A. | 1 only |
B. | 2 only |
C. | Both 1 and 2 |
D. | Neither 1 nor 2 |
Answer» D. Neither 1 nor 2 | |
35. |
A man of height 6 feet walks at uniform rate of 3kmph away from the lamp post of 15 feet height. The rate at which the length of his shadow changes is |
A. | 2 kmph, decreases |
B. | 2 kmph increases |
C. | 4.5 kmph, increases |
D. | 4.5 kmph decreases |
Answer» C. 4.5 kmph, increases | |
36. |
If y = cos2 x2, find \(\frac {dy}{dx}\) |
A. | 4x2 sin x2 cos x2 |
B. | -4x cos x2 sin x2 |
C. | 2x sin x2 cos x2 |
D. | -2x cos x2 sin x2 |
Answer» C. 2x sin x2 cos x2 | |
37. |
Evaluate\(\int\limits_0^1 {\frac{{\ln (x + 1)}}{{{x^2} + 1}}} ~dx\) |
A. | \(\pi \ln \sqrt 2\) |
B. | \(\frac{\pi }{8}\ln \sqrt 2\) |
C. | \(2\pi \ln \sqrt 2\) |
D. | \( \ln \sqrt 2\) |
Answer» C. \(2\pi \ln \sqrt 2\) | |
38. |
If a function is continuous at a point |
A. | The limit of the function may not exist at the point |
B. | The function must be derivable at the point |
C. | The limit of the function at the point tends to infinity |
D. | The limit must exist at the point and the value of limit should be same as the value of the function at that point |
Answer» E. | |
39. |
If 0 < a < b, then \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} \frac{{\left| {\rm{x}} \right|}}{{\rm{x}}}{\rm{dx}}\) is equal to |
A. | |b| - |a| |
B. | |a|- |b| |
C. | \(\frac{{\left| {\rm{b}} \right|}}{{\left| {\rm{a}} \right|}}\) |
D. | 0 |
Answer» B. |a|- |b| | |
40. |
Consider the following statements:Fourier series of any periodic function X(t) can be obtained if1. \(\mathop \smallint \limits_0^1 \left| {x\left( t \right)} \right|dt < \infty \)2. Finite number of discontinous exist within finite time interval t.Which of the above statements is/are correct ? |
A. | 1 only |
B. | 2 only |
C. | Both 1 and 2 |
D. | Neither 1 nor 2 |
Answer» C. Both 1 and 2 | |
41. |
For each t > 0, if \({\rm{\Phi }}\left( {x,t} \right) = \frac{1}{{\sqrt {4\pi t} }}{e^{ - {x^2}/4t}}\) solves the heat equation, then for t > 0 |
A. | \(\mathop \smallint \limits_{ - \infty }^\infty {\rm{\Phi }}\left( {x,t} \right)dt = 0\) |
B. | \(\mathop \smallint \limits_{ - \infty }^\infty {\rm{\Phi }}\left( {x,t} \right)dt = 1\) |
C. | \(\mathop \smallint \limits_{ - \infty }^\infty {\rm{\Phi }}\left( {x,t} \right)dt = \infty\) |
D. | not defined |
Answer» C. \(\mathop \smallint \limits_{ - \infty }^\infty {\rm{\Phi }}\left( {x,t} \right)dt = \infty\) | |
42. |
Given a vector \(\vec u = \frac{1}{3}\left( { - {y^3}̂ i + {x^3}̂ j + {z^3}̂ k} \right)\)and n̂ as the unit normal vector to the surface of the hemisphere (x2 + y2 + z2 = 1; z ≥ 0), the value of integral \(\smallint \left( {\;\nabla \times u} \right) \bullet \hat n\;dS\) evaluated on the curved surface of the hemisphere S is |
A. | – π/2 |
B. | π/3 |
C. | π/2 |
D. | π |
Answer» D. π | |
43. |
If \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) and f(f(x)) = x then |
A. | d = a |
B. | d = - a |
C. | a = b = c = d = 1 |
D. | a = c = 1 |
Answer» C. a = b = c = d = 1 | |
44. |
Find the equation of tangent and normal for f(x) = x2 – 4x + 10 at x = 5. |
A. | 6y + x = 95 and 6x – y = 15 |
B. | x + 6y = 95 and 6x – y = 15 |
C. | x - 6y = - 85 and 6x = y = 15 |
D. | x - 6y = 85 and 6x = y = -15 |
Answer» B. x + 6y = 95 and 6x – y = 15 | |
45. |
If \(f\left( x \right) = \frac{{{{\cos }^2}x}}{{1 + {{\sin }^2}x}}\), then the value \(f\left( {\frac{\pi }{4}} \right) - 3f'\left( {\frac{\pi }{4}} \right)\) is |
A. | 0 |
B. | 1 |
C. | 3 |
D. | 4 |
Answer» D. 4 | |
46. |
Equation of the line normal to function \(f\left( X \right) = {\left( {X - 8} \right)^{\frac{2}{3}}} + 1\) at P(0,5) is |
A. | y = 3x - 5 |
B. | y = 3x + 5 |
C. | 3y = x + 15 |
D. | 3y = x - 15 |
Answer» C. 3y = x + 15 | |
47. |
If 7x3 + 3y3 + 4x2 + 6x = 100, then (dy/dx)(2, 4) is |
A. | \(-\frac{55}{72}\) |
B. | \(-\frac{53}{72}\) |
C. | \(-\frac{59}{72}\) |
D. | \(-\frac{61}{72}\) |
Answer» C. \(-\frac{59}{72}\) | |
48. |
If the centre of a circle is (-6, 8) and it passes through the origin, then equation to its tangent at the origin is |
A. | 2y = x |
B. | 4y = 3x |
C. | 3y = 4x |
D. | 3x + 4y = 0 |
Answer» C. 3y = 4x | |
49. |
\(\mathop \smallint \limits_{ - 1}^2 x\left| x \right|\;dx\) is equal to |
A. | 0 |
B. | 2/3 |
C. | 5/3 |
D. | 7/3 |
Answer» E. | |
50. |
Consider the hemi-spherical tank of radius 13 m as shown in the figure (not drawn to scale). What is the volume of water (in m3) when the depth of water at the centre of the tank is 6 m? |
A. | 78 π |
B. | 468 π |
C. | 156 π |
D. | 396 π |
Answer» E. | |