Explore topic-wise MCQs in UPSEE.

This section includes 395 Mcqs, each offering curated multiple-choice questions to sharpen your UPSEE knowledge and support exam preparation. Choose a topic below to get started.

351.

Let ar, aϕ, and az be unit vectors along r, ϕ and z directions, respectively in the cylindrical coordinate system. For the electric flux density given by D = (ar 15 + aϕ 2r - az 3rz) Coulomb/m2, the total electric flux, in Coulomb, emanating from the volume enclosed by a solid cylinder of radius 3 m and height 5 m oriented along the z-axis with its base at the origin is:

A. 54 π
B. 90 π
C. 108 π
D. 180 π
Answer» E.
352.

Consider the following statements:1. f(x) = In x is an increasing function on (0, ∞).2. f(x) = ex – x (In x) is an increasing function on (1, ∞)Which of the above statements is/are correct?

A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2
Answer» D. Neither 1 nor 2
353.

If \({\rm{f}}\left( {\rm{x}} \right) = {\rm{x}}\left( {\sqrt {\rm{x}} - \sqrt {{\rm{x}} + 1} } \right)\), then f(x) is

A. continuous but not differentiable at x = 0
B. differentiable at x = 0
C. not continuous at x = 0
D. None of the above
Answer» C. not continuous at x = 0
354.

If xy = a2 and S = b2x + c2y, Where a, b and c are constants, then the minimum value of S is:

A. abc
B. 2 abc
C. 3 abc
D. a + b + c
Answer» C. 3 abc
355.

Differentiate x-ln x with respect to \(\rm e^{x^{2}}\)

A. \(\rm -x^{-\ln x}(\ln x)\over x^2e^{x^{2}}\)
B. \(\rm -x^{-\ln x}(\ln x)\over xe^{x^{2}}\)
C. \(\rm -2x^{-\ln x}(\ln x)\over x^2e^{x^{2}}\)
D. \(\rm -2x^{-\ln x}(\ln x)\over xe^{x^{2}}\)
Answer» B. \(\rm -x^{-\ln x}(\ln x)\over xe^{x^{2}}\)
356.

If \(y = \sqrt {x + \sqrt {x + \sqrt {x + ... \infty } } } \), then \(\frac{{dy}}{{dx}}\) is

A. 1
B. \(\frac{1}{{xy}}\)
C. \(\frac{1}{{2y - x}}\)
D. \(\frac{1}{{2y - 1}}\)
Answer» E.
357.

\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - \left( {1 + x + \frac{{{x^2}}}{2}} \right)}}{{{x^3}}} =\)

A. 0
B. \(\frac{1}{6}\)
C. \(\frac{1}{3}\)
D. 1
Answer» C. \(\frac{1}{3}\)
358.

Let x be a continuous variable defined over the interval (-∞, ∞) and \(f\left( x \right) = {e^{ - x - {e^{ - x}}}}\). The integral \(g\left( x \right) = \smallint f\left( x \right)dx\) is equal to

A. \({e^{{e^{ - x}}}}\)
B. \({e^{ - {e^{ - x}}}}\)
C. \({e^{ - {e^x}}}\)
D. e-x
Answer» C. \({e^{ - {e^x}}}\)
359.

\(\displaystyle\int\left(\dfrac{1}{\sin^2 x} + \dfrac{1}{\cos^2 x}\right)dx= \ ?\)

A. tan x + cot x + C
B. tan x - cot x + C
C. (tan x + cot x)2 + C
D. (tan x - cot x)2 + C
Answer» C. (tan x + cot x)2 + C
360.

Let X = (3, 2, -1), Y = (2, 4, 1), Z = (4, 0, -3) and W = (10, 4, -5) be vector in R3 in real vector space. Which one of the following is correct?

A. 2X + Z = W, Y + Z = W
B. 2X – Y = Z, Y + 2Z = W
C. X + Z = W, 2X + Y = Z
D. 2Z + Y = W, X – Y = Z
Answer» C. X + Z = W, 2X + Y = Z
361.

Find \(\mathop {\lim }\limits_{x \to \infty } \left( {{x^{\frac{1}{x}}}} \right)\)

A. 1
B.
C. 0
D. -1
Answer» B. ∞
362.

If the curve y = a√x + bx, passes through the point (1, 2) and the area bounded by the curve, line x = 4 and x-axis is 8 sq. unit, then :

A. a = 3, b = -1
B. a = 3, b = 1
C. a = -3, b = 1
D. a = -3, b = -1
Answer» B. a = 3, b = 1
363.

If = 3xzî + 2xyĵ - yz2 k̂ then div \(\rm \vec v\) ​​is

A. 3x + 2y + 2z
B. 2x + 3y + 2z
C. x + 2y + z
D. 3z + 2x - 2yz
Answer» E.
364.

If u = eax sin bx and v = eax cos bx, then what is \({\rm{u}}\frac{{{\rm{du}}}}{{{\rm{dx}}}} + {\rm{v}}\frac{{{\rm{dv}}}}{{{\rm{dx}}}}\) equal to?

A. a e2ax
B. (a2 + b2)eax
C. ab e2ax
D. (a + b)eax
Answer» B. (a2 + b2)eax
365.

For any quadratic function px2 + qx + r the value of θ in Lagrange’s theorem is always:

A. ½ (whatever p, q, r, a and h may be)
B. \(\frac{a+h}{2}\) (whatever p, q, r, a and h may be)
C. 0 (whatever p, q, r, a and h may be)
D. \(\frac{a-h}{2}\) (whatever p, q, r, a and h may be)
Answer» B. \(\frac{a+h}{2}\) (whatever p, q, r, a and h may be)
366.

Let \({a_n} = \int_0^{\pi /4} {{{\tan }^n{{x}}}} dx\). Then a2 + a4, a3 + a5, a4 + a6 are in

A. A. P.
B. G. P.
C. H. P.
D. None of these
Answer» D. None of these
367.

log 2 = x, log 3 = y, then log 6 is

A. x - y
B. xy
C. x + y
D. x/y
Answer» D. x/y
368.

If the vectors \(\overrightarrow a = 2\widehat i - 3\widehat j - \widehat k\) and \(\overrightarrow b = \widehat i + 4\widehat j - 2\widehat k\) represent the two sides of any triangle, then the area of that triangle is:

A. \(\frac{1}{2}\sqrt {232} \) square units
B. \(\sqrt {234} \) square units
C. \(\sqrt {250} \) square units
D. \(\frac{1}{2}\sqrt {230} \) square units
Answer» E.
369.

As \(\rm x\) varies from \(\rm −1\ to \ +3\), which one of the following describes the behaviour of the function \(\rm f(x) = x^3 – 3x^2 + 1\)?

A. \(\rm f(x)\) increases monotonically.
B. \(\rm f(x)\) increases, then decreases and increases again.
C. \(\rm f(x)\) decreases, then increases and decreases again.
D. \(\rm f(x)\) increases and then decreases.
Answer» C. \(\rm f(x)\) decreases, then increases and decreases again.
370.

A rectangular box with square base is open at the top. The maximum volume of the box made from 1200 m2 tin is

A. 2000 m3
B. 3000 m3
C. 4000 m3
D. None of the above
Answer» D. None of the above
371.

In the Taylor’s series expansion of ex about x = 2, the coefficient of (x – 2)4 is

A. 24/4!
B. 1/4!
C. e2/4!
D. e4/4!
Answer» D. e4/4!
372.

If f(x) is an even function, where f(x) ≠ 0, then which one of the following is correct?

A. f’(x) is an even function
B. f’(x) is an odd function
C. f’(x) may be an even or odd function depending on the type of function
D. f’(x) is a constant function
Answer» C. f’(x) may be an even or odd function depending on the type of function
373.

Evaluate \(\mathop \smallint \limits_{ - \infty }^\infty {x^4}f\left( x \right)dx\), where,\(f\left( x \right) = \frac{1}{{\sqrt {2\pi } }}{e^{ - \left( {\frac{{{x^2}}}{2}} \right)}},\;x \in \left( { - \infty ,\;\infty } \right)\)

A. 3
B. \(3\sqrt \pi \)
C. \(\sqrt 3 \;\pi \)
D.
Answer» B. \(3\sqrt \pi \)
374.

\(\mathop \smallint \limits_1^2 {x^2}dx =\)

A. 7/3
B. 3/7
C. 2/3
D. 3/2
Answer» B. 3/7
375.

Let \(\vec a = \hat i - \hat j + \hat k\) and \(\vec b = \hat i + \hat j - \hat k\) then unit vector perpendicular to the plane containing \(\vec a\) and \(\vec b\) is

A. \(\frac{{\hat j\;+\;\hat k}}{{\sqrt 2 }}\)
B. \(\sqrt 2({\hat j + \hat k} )\)
C. \(\sqrt 2 ({\hat j - \hat k})\)
D. \(\frac{{\hat j\;-\;\hat k}}{{\sqrt 2 }}\)
Answer» B. \(\sqrt 2({\hat j + \hat k} )\)
376.

If Y = ex sin x, then which of the following differential equation holds true?

A. \(\frac{{{d^2}y}}{{d{x^2}}} + \frac{{dy}}{{dx}} + y = 0\)
B. \(\frac{{{d^2}y}}{{d{x^2}}}-2\frac{{dy}}{{dx}} + 2y = 0\)
C. \(\frac{{{d^2}y}}{{d{x^2}}}-\frac{{dy}}{{dx}} + y = 0\)
D. \(\frac{{{d^2}y}}{{d{x^2}}} + 2\frac{{dy}}{{dx}}\; - \;y = 0\)
Answer» C. \(\frac{{{d^2}y}}{{d{x^2}}}-\frac{{dy}}{{dx}} + y = 0\)
377.

Consider function f(x) = (x2 - 4)2, where x is a real number. The function f(x) has

A. Only one minimum
B. Only two minima
C. Only three maxima
D. None of the above
Answer» C. Only three maxima
378.

Let \(f\left( x \right)\) be a function such that\(f\left( {\frac{1}{x}} \right)\; + \;{x^3}f\left( x \right)\) = 0, what is \(\mathop \smallint \limits_{ - 1}^1 f\left( x \right)dx\) equal to?

A. 2 f(1)
B. 0
C. 2 f(-1)
D. 4 f(1)
Answer» C. 2 f(-1)
379.

If x loge (loge x) – x2 + y2 = 4 (y > 0), then dy/dx at x = e is equal to:

A. \(\frac{{\left( {1 + 2e} \right)}}{{2\sqrt {4 + {e^2}} }}\)
B. \(\frac{{\left( {2e - 1} \right)}}{{2\sqrt {4 + {e^2}} }}\)
C. \(\frac{{\left( {1 + 2e} \right)}}{{\sqrt {4 + {e^2}} }}\)
D. \(\frac{e}{{\sqrt {4 + {e^2}} }}\)
Answer» C. \(\frac{{\left( {1 + 2e} \right)}}{{\sqrt {4 + {e^2}} }}\)
380.

If two vectors \(\overrightarrow a\) and \(\overrightarrow b \) be such that \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a - \overrightarrow b } \right|\), then the angle between them is

A. \(\frac{\pi }{4}\)
B. \(\frac{\pi }{3}\)
C. \(\frac{\pi }{2}\)
D. None of these
Answer» D. None of these
381.

If (sin x)y, then \(\dfrac{dy}{dx}\) is ______:

A. \(\rm \dfrac{y^2\ cot\ x}{1-y\ log(sin\ x)}\)
B. \(\rm \dfrac{y^2\ cot\ x}{1-y\ log\ x}\)
C. \(\rm \dfrac{y^2\ cot\ x}{1+y\ log(sin\ x)}\)
D. \(\rm \dfrac{y^2\ cot\ x}{1+y\ log\ x}\)
Answer» B. \(\rm \dfrac{y^2\ cot\ x}{1-y\ log\ x}\)
382.

Evaluate the following integral \(\mathop{\int }_{0}^{a}\mathop{\int }_{0}^{a}\mathop{\int }_{0}^{a}\left( xy+xz+yz \right)dx~dy~dz.\)

A. \(\frac{3}{4}{{a}^{3}}\)
B. \(\frac{2}{3}{{a}^{5}}\)
C. \(\frac{3}{4}{{a}^{5}}\)
D. \(\frac{5}{3}{{a}^{3}}\)
Answer» D. \(\frac{5}{3}{{a}^{3}}\)
383.

If \(\int e^x (f(x) - f'(x))dx = \phi(x),\) then the value of \(\int e^x f(x)dx\) is

A. ϕ(x) + ex f(x)
B. ϕ(x) - ex f(x)
C. \(\frac 1 2 \left[\phi (x) + e^x f(x)\right]\)
D. \(\frac 1 2 \left[\phi (x) + e^x f'(x)\right]\)
Answer» D. \(\frac 1 2 \left[\phi (x) + e^x f'(x)\right]\)
384.

A function f : (0, π) → R defined by f(x) = 2 sin x + cos 2x has

A. A local minimum but no local maximum
B. A local maximum but no local minimum
C. Both local minimum and local maximum
D. Neither a local minimum nor a local maximum
Answer» D. Neither a local minimum nor a local maximum
385.

Let f(x) be a real -valued function such that f'(x0) = 0 for some x0 ∈ (0, 1), and f"(x) > 0 for all x ∈ (0, 1). Then f(x) has

A. exactly one local minimum in (0, 1)
B. two distinct local minima in (0, 1)
C. one local maximum in (0, 1)
D. no local minimum in (0, 1)
Answer» B. two distinct local minima in (0, 1)
386.

How much angle does the tangent at P make with y-axis?

A. tan-1m2
B. cot-1 (1 + m2)
C. \({\sin ^{ - 1}}\left( {\frac{1}{{\sqrt {1 + {m^4}} }}} \right)\)
D. \({\sec ^{ - 1}}\sqrt {1 + {m^4}}\)
Answer» D. \({\sec ^{ - 1}}\sqrt {1 + {m^4}}\)
387.

The two types of errors that are related to differentials are:

A. Absolute, Relative.
B. Human, Absolute.
C. Controllable, Natural.
D. Relative, Controllable.
Answer» B. Human, Absolute.
388.

At what value of q is the concavity of w(q) = -2, if w(q) = q4 - 16?

A. At q = 0.
B. At q = fourth root of 14.
C. Never; w(q) is always concave up.
D. Never; w(q) is always concave down.
Answer» D. Never; w(q) is always concave down.
389.

 If f (0) = 2 and f (x) = 1 /  (5-x2), then lower and upper bound of f(1) estimated by the mean value theorem are

A. 1.9,2.2
B. 2.2,2.25
C. 2.25,2.5
D. None of these
Answer» C. 2.25,2.5
390.

  What is the derivative of f(x) =  | x | at x = 0 

A. 1
B. -1
C. 0
D. Does not exist
Answer» E.
391.

  The function f(x) = 3x(x - 2) has a

A. minimum at x = 1
B. maximum at x = 1
C. minimum at x = 2
D. maximum at x = 2
Answer» B. maximum at x = 1
392.

 The minimum value of | x2 _ 5x + 21 | is

A. -5
B. 0
C. -1
D. -2
Answer» C. -1
393.

   If f(x) = | x | , then for interval [-1, 1] ,f(x)

A. satisied all the conditions of Rolles Theorem
B. satisfied all the conditions of Mean Value Theorem
C. does not satisied the -conditions of Mean Value Theorem
D. None of these
Answer» D. None of these
394.

  The interval in which the Lagrange's theorem is applicable for the function f(x) = 1/x is

A. [-3, 3]
B. [-2, 2]
C. [2, 3]
D. [-1, 1]
Answer» D. [-1, 1]
395.

 The function f(x) = x3 - 6x2 + 9x + 25 has

A. a maxima at x= 1 and a minima at x = 3
B. a maxima at x = 3 and a minima at x = 1
C. no maxima, but a minima at x = 1
D. a maxima at x = 1, but no minima
Answer» B. a maxima at x = 3 and a minima at x = 1