Explore topic-wise MCQs in UPSEE.

This section includes 395 Mcqs, each offering curated multiple-choice questions to sharpen your UPSEE knowledge and support exam preparation. Choose a topic below to get started.

101.

If \(\mathop {\lim }\limits_{n \to \infty } {a_n} = 0\), then the series \(\sum {{a_n}}\) is:

A. Oscillatory
B. Divergent
C. Convergent
D. None of these
Answer» D. None of these
102.

If the area of the trapezium is the maximum possible, then what is α equal to?

A. \(\frac{{\rm{\pi }}}{6}\)
B. \(\frac{{\rm{\pi }}}{4}\)
C. \(\frac{{\rm{\pi }}}{3}\)
D. \(\frac{{2\rm{\pi }}}{5}\)
Answer» D. \(\frac{{2\rm{\pi }}}{5}\)
103.

Consider the function\({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}} {{{\rm{x}}^2}{\rm{ln}}\left| {\rm{x}} \right|}&{{\rm{x}} \ne 0}\\ 0&{{\rm{x}} = 0} \end{array}} \right.\)What is f’(0) equal to?

A. 0
B. 1
C. -1
D. It does not exist
Answer» B. 1
104.

Let ϕ be an arbitrary smooth real valued scalar function and V be an arbitrary smooth vector valued function in a three-dimensional space. Which one of the following is an identity?

A. \({\rm{Curl}}\left( {\phi {\rm{\vec V}}} \right) = \nabla \left( {\phi~ {\rm{Div\vec V}}} \right)\)
B. \({\rm{Div\vec V}} = 0\)
C. ​​​​\({\rm{Div~Curl\vec V}} = 0\)
D. \({\rm{Div}}\left( {\phi {\rm{\vec V}}} \right) = \phi ~{\rm{Div\vec V}}\)
Answer» D. \({\rm{Div}}\left( {\phi {\rm{\vec V}}} \right) = \phi ~{\rm{Div\vec V}}\)
105.

Let f : R → R be defined by \(\rm f(x)=\left\{\begin{matrix} \rm x+2 &\rm if\ x

A. 0.5
B. 2.5
C. 4.5
D. 6.5
Answer» D. 6.5
106.

A series expansion for the function sin θ is

A. \(1 - \frac{{{\theta ^2}}}{{2!}} + \frac{{{\theta^4}}}{{4!}} - \ldots\)
B. \(\theta - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta^5}}}{{5!}} - \ldots\)
C. \(1 + \theta + \frac{{{\theta ^2}}}{{2!}} + \frac{{{\theta^3}}}{{3!}} + \ldots\)
D. \(\theta + \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta^5}}}{{5!}} + \ldots\)
Answer» C. \(1 + \theta + \frac{{{\theta ^2}}}{{2!}} + \frac{{{\theta^3}}}{{3!}} + \ldots\)
107.

Let ∇⋅(fv) = x2y + y2z + z2x, where f and v are scalar and vector fields respectively. If v = yi + zj + xk, then v⋅∇f is

A. x2y + y2z + z2x
B. 2xy + 2yz + 2zx
C. x + y + z
D. 0
Answer» B. 2xy + 2yz + 2zx
108.

\(\mathop \smallint \limits_0^{\frac{\pi }{2}} \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin \left( {x + y} \right)dxdy\) is

A. 0
B. π
C. \(\frac{\pi }{2}\)
D. 2
Answer» E.
109.

If \(\rm f(x) = \log_{x^2 } x\), then f'(x) at x = e, is

A. 0
B. 1
C. 1/e
D. 1/(2e)
Answer» B. 1
110.

If \(\vec{a}, \vec{b}, \vec{c}\) are three vectors such that \(\vec{a}+ \vec{b}+\vec{c}=0\) and \(|\vec{a}|=2, |\vec{b}|=3, |\vec{c}|=5\) then the value of \(\vec{a} \ \bullet \ \vec{b} + \vec{b} \ \bullet \ \vec{c} + \vec{c} \ \bullet \ \vec{a}\) is:

A. 0
B. 1
C. -19
D. 38
Answer» D. 38
111.

If x + y = 20 and P = xy, then what is the maximum value of P?

A. 100
B. 96
C. 84
D. 50
Answer» B. 96
112.

Find the angle between two vectors \(\vec a\) and \(\vec b\) with magnitudes 1 and 2 respectively and \(\vec a.\vec b = 1\)

A. 30 degrees
B. 60 degrees
C. 45 degrees
D. zero degrees
Answer» C. 45 degrees
113.

If \(y = {e^{{e^x}}}\) then \(\frac{{dy}}{{dx}}\) is equal to?

A. \({e^{{e^x}}}\)
B. \({e^{({e^x}+ x)}}\)
C. \({e^x} + x\)
D. None of these
Answer» C. \({e^x} + x\)
114.

Let f: [0, 1] → R be such that f(xy) = f(x)∙f(y) for all x, y ∈ [0, 1], and f(0) ≠ 0. If y = y(x) satisfies the differential equation\(\text{, }\!\!~\!\!\text{ }\frac{dy}{dx}=f\left( x \right)\text{ }\!\!~\!\!\)with y(0) = 1, then \(y\left( \frac{1}{4} \right)+y\left( \frac{3}{4} \right)\) is equal to:

A. 3
B. 4
C. 2
D. 5
Answer» B. 4
115.

In the open interval (0, 1), the polynomial p(x) = x4 - 4x3 + 2 has

A. one real root
B. three real roots
C. two real roots
D. no real roots
Answer» B. three real roots
116.

If \(\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] = 1\), then the value of \(\frac{{\overrightarrow a \cdot \overrightarrow b \times \overrightarrow c }}{{\overrightarrow c \times \overrightarrow a \cdot \overrightarrow b }} + \frac{{\overrightarrow b \cdot \overrightarrow c \times \overrightarrow a }}{{\overrightarrow a \times \overrightarrow b \cdot \overrightarrow c }} + \frac{{\overrightarrow c \cdot \overrightarrow a \times \overrightarrow b }}{{\overrightarrow b \times \overrightarrow c \cdot \overrightarrow a }}\) is:

A. 1
B. -1
C. 2
D. 3
Answer» E.
117.

In the given partial differential equation if B ≠ 0, the equation is known as:\(\frac{{{\partial ^2}u}}{{\partial {t^2}}} - {B^2}\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}}} \right) = 0\)

A. Poisson’s equation
B. Laplace equation
C. Wave equation
D. Thermal equation
Answer» D. Thermal equation
118.

Find the value of \(I=\int_1^2\frac{\log x}{x^2}\)

A. \(\frac{1}{4}\log \frac{e}{2}\)
B. \(\frac{1}{2}\log \frac{e}{2}\)
C. log e
D. \(\frac{1}{2}\log \frac{e}{4}\)
Answer» C. log e
119.

For the spherical surface x2 + y2 + z2 – 1, the unit outward normal vector at the point \(\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }},0} \right)\) is given by

A. \(\frac{1}{{\sqrt 2 }}\hat i + \frac{1}{{\sqrt 2 }}\hat j\;\)
B. \(\frac{1}{{\sqrt 2 }}\hat i - \frac{1}{{\sqrt 2 }}\hat j\)
C. \(\hat k\)
D. \(\frac{1}{{\sqrt 3 }}\hat i + \frac{1}{{\sqrt 3 }}\hat j + \frac{1}{{\sqrt 3 }}\hat k\)
Answer» B. \(\frac{1}{{\sqrt 2 }}\hat i - \frac{1}{{\sqrt 2 }}\hat j\)
120.

If value of ∫ \(\frac{2x}{(x^2+1)(x^2+3)}dx\) will be _______ where c is an arbitary constant.

A. \(\frac{1}{2}log\frac{x^2 +1}{x^2+3}+c\)
B. \(\frac{1}{2}log\frac{x^2 -1}{x^2+1}+c\)
C. \(2log\frac{x +1}{x-3}+c\)
D. \(2log\frac{2x +1}{2x-1}+c\)
Answer» B. \(\frac{1}{2}log\frac{x^2 -1}{x^2+1}+c\)
121.

Equation of a plane passing through the point \(3\widehat i - \widehat j + \widehat k\) and perpendicular to the vector \(4\widehat i + 2\widehat j - \widehat k\) is

A. 2x + 4y + z = 9
B. 2x + 4y - z + 9 = 0
C. 4x + 2y + z = 9
D. 4x + 2y - z = 9
Answer» E.
122.

Area enclosed between the curve y2(2a - x) = x3 and the line x = 2a above x -axis is

A. πa2
B. \(\frac{{3\pi {a^2}}}{2}\)
C. 2πa2
D. 3πa2
Answer» C. 2πa2
123.

Consider the line integral \(\mathop \smallint \limits_c \left( {xdy - ydx} \right)\) the integral being taken in a counter clockwise direction over the closed curve C that forms the boundary of the region R shown in the figure below. The region R is the area enclosed by the union of a 2 × 3 rectangle and a semi-circle of radius 1. The line integral evaluates to

A. 6 + π/2
B. 8 + π
C. 12 + π
D. 16 + 2π
Answer» D. 16 + 2π
124.

If the area of the trapezium is maximum, what is the length of fourth side?

A. 8 cm
B. 9 cm
C. 10 cm
D. 12 cm
Answer» E.
125.

If y = (1 + x)(1 + x2) ..... (1 + x100) then \(\dfrac{dy}{dx}\) at x = 0 is

A. 100
B. 0
C. 1
D. 5050
Answer» D. 5050
126.

If x = 3 tan t and y = 3 sec t, then the value of \(\frac{{{d}^{2}}y}{d{{x}^{2}}}\text{ }\!\!~\!\!\text{ at }\!\!~\!\!\text{ }t=\frac{\pi }{4},\) is:

A. \(\frac{1}{3\sqrt{2}}\)
B. \(\frac{1}{6\sqrt{2}}\)
C. \(\frac{3}{2\sqrt{2}}\)
D. 186
Answer» C. \(\frac{3}{2\sqrt{2}}\)
127.

∫ (In x)-1 dx - ∫ (In x)-2 dx is equal to

A. x (In x)-1 + c
B. x (In x)-2 + c
C. x (In x) + c
D. x (In x)2 + c
Answer» B. x (In x)-2 + c
128.

Curl of vector V(x,y,z) = 2x2i + 3z2j + y3k at x = y = z = 1 is

A. – 3i
B. 3i
C. 3i – 4j
D. 3i – 6k
Answer» B. 3i
129.

For a right-angled triangle, if the sum of the lengths of the hypotenuse and a side is kept constant, in order to have a maximum area of the triangle, the angle between the hypotenuse and the side is

A. 12°
B. 36°
C. 60°
D. 45°
Answer» D. 45°
130.

A primitive of |x|, when x < 0, is

A. \(\frac{{{x^2}}}{2} + c\)
B. \( - \frac{{{x^2}}}{2} + c\)
C. x + c
D. -x + c
Answer» C. x + c
131.

\(\mathop {\lim }\limits_{x \to - 5} \frac{{\sqrt {\left( {2x + 35} \right)} - 5}}{{x + 5}}\)

A. \(\frac{1}{5}\)
B. \(\frac{1}{6}\)
C. \(\frac{1}{{\sqrt 5 }}\)
D. \(\frac{{\sqrt 5 }}{2}\)
Answer» B. \(\frac{1}{6}\)
132.

A value of α such that \(\mathop \smallint \nolimits_\alpha ^{\alpha + 1} \frac{{{\rm{d}}x}}{{\left( {x + \alpha } \right)\left( {x + \alpha + 1} \right)}} = {\rm{lo}}{{\rm{g}}_{\rm{e}}}\left( {\frac{9}{8}} \right)\) is:

A. -2
B. \(\frac{1}{2}\)
C. \(- \frac{1}{2}\)
D. 2
Answer» B. \(\frac{1}{2}\)
133.

Find the area of triangle whose two sides are represented by the vectors 3i + 4j and 5i + 7j + k is

A. \(\sqrt {26}\over 2\)
B. \(\sqrt{26}\)
C. 13
D. \(\sqrt{13}\over 2\)
Answer» B. \(\sqrt{26}\)
134.

If x = -1 and x = 2 are extreme points of f(x) = a log |x| + βx2 + x then

A. α = -6, β = -½
B. α = 2, β = -½
C. α = 2, β = ½
D. α = -6, β = ½
Answer» C. α = 2, β = ½
135.

Divergence of the vector field \({x^2}z\hat i + xy\hat j - y{z^2}\hat k\) at (1, -1, 1) is

A. 0
B. 3
C. 5
D. 6
Answer» D. 6
136.

A function is defined in (0, ∞) by \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}} {1 - {{\rm{x}}^2}{\rm{\;for\;}}0 < {\rm{x}} \le 1}\\ {{\rm{In\;x\;for\;}}1 < {\rm{x}} \le 2}\\ {{\rm{In\;}}2 - 1 + 0.5{\rm{x\;for\;}}2 < {\rm{x}} < \infty } \end{array}} \right.\)Which one of the following is correct in respect of the derivative of the function, i.e. f’(x)?

A. f’(x) = 2x for 0 < x ≤ 1
B. f’(x) = -2x for 0 < x ≤ 1
C. f’(x) = -2x for 0 < x < 1
D. f’(x) = 0 for 0 < x < ∞
Answer» C. f’(x) = -2x for 0 < x < 1
137.

A path AB in the form of one quarter of a circle of unit radius is shown in the figure. Integration of (x+y)2 on path AB traversed in a counter-clockwise sense is

A. \(\frac{x}{2} - 1\)
B. \(\frac{\pi }{2} + 1\)
C. \(\frac{\pi }{2}\)
D. 1
Answer» C. \(\frac{\pi }{2}\)
138.

At point (1, 0, 3) on the surface 2x2 + 3y2 + z2 – 11 = 0, the directional derivative in the direction \(\vec a = \hat i + 2\hat j + \hat k\) is

A. 10
B. \(\frac{{5}}{{3 }}\)
C. \(\frac{{-5}}{{3 }}\)
D. \(\frac{{10}}{{\sqrt 6 }}\)
Answer» E.
139.

If \(v = {\left( {{x^2} + {y^2} + {z^2}} \right)^{ - \frac{1}{2}}},~then~~\frac{{{\partial ^2}v}}{{\partial {x^2}}} + \frac{{{\partial ^2}v}}{{\partial {y^2}}} + \frac{{{\partial ^2}v}}{{\partial {z^2}}}\) is

A. -1/2
B. -1
C. 0
D. 1
Answer» D. 1
140.

Let f(x + y) = f(x)f(y) and f(x) = 1 + xg(x)φ(x), where \(\mathop {\lim }\limits_{{\rm{x}} \to 0} {\rm{g}}\left( {\rm{x}} \right) = {\rm{a}}\) and \(\mathop {\lim }\limits_{{\rm{x}} \to 0} \phi \left( {\rm{x}} \right) = {\rm{b}}\) then what is f’(x) equal to?

A. 1 + abf(x)
B. 1 + ab
C. ab
D. abf(x)
Answer» E.
141.

If \(\rm \displaystyle I_n = \int_0^a(a^2 - x^2)^n \ dx\), where n is a positive integer, then the relation between In and In-1 is:

A. \(\rm I_n = \left(\dfrac{2na^2}{2n+1}\right)I_{n-1}\)
B. \(\rm I_n = \left(\dfrac{2n^2a^2}{2n+1}\right)I_{n-1}\)
C. \(\rm I_n = \left(\dfrac{2na^2}{2n-1}\right)I_{n-1}\)
D. \(\rm I_n = \left(\dfrac{2n^2a^2}{2n-1}\right)I_{n-1}\)
Answer» D. \(\rm I_n = \left(\dfrac{2n^2a^2}{2n-1}\right)I_{n-1}\)
142.

Let \(I = \mathop \smallint \nolimits_a^b \left( {{x^4} - 2{x^2}} \right)dx\). If ‘I’ is minimum then the ordered pair (a, b) is:

A. (0, √2)
B. (-√2, 0)
C. (√2, -√2)
D. (-√2, -√2)
Answer» D. (-√2, -√2)
143.

Find the divergence of a vector \(\vec A = {x^2}{\hat a_x} + 6{y^2}{\hat a_y} + {z^3}{\hat a_z}\) at point P (2, 4, 1).

A. 10
B. 24
C. 16
D. 55
Answer» E.
144.

Consider a function \(\bar f = \frac{1}{{{r^2}}}\hat r\), where r is the distance from the origin and \(\hat r\) is the unit vector in the radial direction. The divergence of the function over a sphere of radius R, which includes the origin, is

A. 0
B.
C.
D.
Answer» B. 2π
145.

Find the derivation of f(x) = 1/x2

A. -2/x3
B. 2/x3
C. -1/2x
D. 1/2x
Answer» B. 2/x3
146.

If the vectors \(2\widehat i + \widehat j + \widehat k\) and \(\widehat i - 4\widehat j + λ \widehat k\) are mutually perpendicular, then the value of λ is:

A. 1
B. 2
C. 3
D. 4
Answer» C. 3
147.

A parametric curve defined by \(x = \cos \left( {\frac{{\pi u}}{2}} \right),y = \sin \left( {\frac{{\pi u}}{2}} \right)\)in the range of 0 ≤ u ≤ 1 is rotated about the X – axis by 360 degrees. Area of the surface generated is

A. \(\frac{\pi }{2}\)
B. π
C.
D.
Answer» D. 4π
148.

Compute \(\begin{array}{*{20}{c}}{{\rm{lim}}}\\{x \to 3}\end{array}\frac{{{x^4} - 81}}{{2{x^2} - 5x - 3}}\)

A. 1
B. 53/12
C. 108/7
D. Limit does not exist
Answer» D. Limit does not exist
149.

Let f : R → R be a continuously differentiable function such that f(2) = 6 and \({\rm{f'}}\left( 2 \right) = \frac{1}{{48}}\). If \(\mathop \smallint \nolimits_6^{{\rm{f}}\left( {\rm{x}} \right)} \left( {4{{\rm{t}}^3}} \right){\rm{dt}} = \left( {{\rm{x}} - 2} \right){\rm{g}}\left( {\rm{x}} \right),{\rm{\;then\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 2} {\rm{\;g}}\left( {\rm{x}} \right)\) is equal to:

A. 18
B. 24
C. 12
D. 36
Answer» B. 24
150.

Consider two functions: \(x\; = \;\psi ln\phi\) and \(y\; = \;\phi ln\psi \). Which one of the following is the correct expression for ∂ψ/∂x?

A. \(\frac{{ln\psi }}{{ln\phi ln\psi - 1}}\)
B. \(\frac{{ln\phi }}{{ln\phi \psi - 1}}\)
C. \(\frac{{xln\psi }}{{ln\phi \psi - 1}}\)
D. \(\frac{{xln\phi }}{{ln\phi ln\psi - 1}}\)
Answer» B. \(\frac{{ln\phi }}{{ln\phi \psi - 1}}\)