 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 17 Mcqs, each offering curated multiple-choice questions to sharpen your Network Theory knowledge and support exam preparation. Choose a topic below to get started.
| 1. | The complete solution of current obtained by substituting the values of c1 and c2 in the following equation is?i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t + π/4 + 88.5⁰). | 
| A. | i = e-37.5t(0.49cos1290t – 1.3sin1290t) + 0.7cos(500t + 133.5⁰) | 
| B. | i = e-37.5t(0.49cos1290t – 1.3sin1290t) – 0.7cos(500t + 133.5⁰) | 
| C. | i = e-37.5t(0.49cos1290t + 1.3sin1290t) – 0.7cos(500t + 133.5⁰) | 
| D. | i = e-37.5t(0.49cos1290t + 1.3sin1290t) + 0.7cos(500t + 133.5⁰) | 
| Answer» E. | |
| 2. | The value of the c2 in the following equation is?i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t + π/4 + 88.5⁰). | 
| A. | 2.3 | 
| B. | -2.3 | 
| C. | 1.3 | 
| D. | -1.3 | 
| Answer» D. -1.3 | |
| 3. | The value of the c1 in the following equation is?i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t + π/4 + 88.5⁰). | 
| A. | -0.5 | 
| B. | 0.5 | 
| C. | 0.6 | 
| D. | -0.6 | 
| Answer» C. 0.6 | |
| 4. | In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the complete solution of current. | 
| A. | i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t + π/4 + 88.5⁰) | 
| B. | i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t – π/4 + 88.5⁰) | 
| C. | i = e-37.5t(c1cos1290t + c2sin1290t) – 0.7cos(500t – π/4 + 88.5⁰) | 
| D. | i = e-37.5t(c1cos1290t + c2sin1290t) – 0.7cos(500t + π/4 + 88.5⁰) | 
| Answer» B. i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t – π/4 + 88.5⁰) | |
| 5. | In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the particular solution. | 
| A. | ip = 0.6cos(500t + π/4 + 88.5⁰) | 
| B. | ip = 0.6cos(500t + π/4 + 89.5⁰) | 
| C. | ip = 0.7cos(500t + π/4 + 89.5⁰) | 
| D. | ip = 0.7cos(500t + π/4 + 88.5⁰) | 
| Answer» E. | |
| 6. | In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the complementary current. | 
| A. | ic = e-37.5t(c1cos1290t + c2sin1290t) | 
| B. | ic = e-37.5t(c1cos1290t – c2sin1290t) | 
| C. | ic = e37.5t(c1cos1290t – c2sin1290t) | 
| D. | ic = e37.5t(c1cos1290t + c2sin1290t) | 
| Answer» B. ic = e-37.5t(c1cos1290t – c2sin1290t) | |
| 7. | In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the roots of the characteristic equation. | 
| A. | -38.5±j1290 | 
| B. | 38.5±j1290 | 
| C. | 37.5±j1290 | 
| D. | -37.5±j1290 | 
| Answer» E. | |
| 8. | In the sinusoidal response of R-L-C circuit, the complementary function of the solution of i is? | 
| A. | ic = c1 e(K1+K2)t + c1 e(K1-K2)t | 
| B. | ic = c1 e(K1-K2)t + c1 e(K1-K2)t | 
| C. | ic = c1 e(K1+K2)t + c1 e(K2-K1)t | 
| D. | ic = c1 e(K1+K2)t + c1 e(K1+K2)t | 
| Answer» B. ic = c1 e(K1-K2)t + c1 e(K1-K2)t | |
| 9. | THE_COMPLETE_SOLUTION_OF_CURRENT_OBTAINED_BY_SUBSTITUTING_THE_VALUES_OF_C1_AND_C2_IS??$ | 
| A. | i = e<sup>-37.5t</sup>(0.49cos1290t – 1.3sin1290t) + 0.7cos(500t + 133.5⁰) | 
| B. | i = e<sup>-37.5t</sup>(0.49cos1290t – 1.3sin1290t) – 0.7cos(500t + 133.5⁰) | 
| C. | i = e<sup>-37.5t</sup>(0.49cos1290t + 1.3sin1290t) – 0.7cos(500t + 133.5⁰) | 
| D. | i = e<sup>-37.5t</sup>(0.49cos1290t + 1.3sin1290t) + 0.7cos(500t + 133.5‚Äö√Ö‚àû) | 
| Answer» E. | |
| 10. | THE_VALUE_OF_THE_C2_OBTAINED_IN_THE_COMPLETE_SOLUTION_OF_QUESTION_7.?$ | 
| A. | 2.3 | 
| B. | -2.3 | 
| C. | 1.3 | 
| D. | -1.3 | 
| Answer» D. -1.3 | |
| 11. | The value of the c1 obtained in the complete solution of question 7? | 
| A. | -0.5 | 
| B. | 0.5 | 
| C. | 0.6 | 
| D. | -0.6 | 
| Answer» C. 0.6 | |
| 12. | The complete solution of current from the information provided in the question 4. | 
| A. | i = e<sup>-37.5t</sup>(c<sub>1</sub>cos1290t + c<sub>2</sub>sin1290t) + 0.7cos(500t + π/4 + 88.5⁰) | 
| B. | i = e<sup>-37.5t</sup>(c<sub>1</sub>cos1290t + c<sub>2</sub>sin1290t) + 0.7cos(500t – π/4 + 88.5⁰) | 
| C. | i = e<sup>-37.5t</sup>(c<sub>1</sub>cos1290t + c<sub>2</sub>sin1290t) – 0.7cos(500t – π/4 + 88.5⁰) | 
| D. | i = e<sup>-37.5t</sup>(c<sub>1</sub>cos1290t + c<sub>2</sub>sin1290t) – 0.7cos(500t + π/4 + 88.5⁰) | 
| Answer» B. i = e<sup>-37.5t</sup>(c<sub>1</sub>cos1290t + c<sub>2</sub>sin1290t) + 0.7cos(500t ‚Äö√Ñ√∂‚àö√ë‚àö¬® ‚âà√¨‚àö√ë/4 + 88.5‚Äö√Ñ√∂‚àö√ñ‚Äö√†√ª) | |
| 13. | The particular solution from the information provided in the question 4. | 
| A. | i<sub>p</sub> = 0.6cos(500t + π/4 + 88.5⁰) | 
| B. | i<sub>p</sub> = 0.6cos(500t + π/4 + 89.5⁰) | 
| C. | i<sub>p</sub> = 0.7cos(500t + π/4 + 89.5⁰) | 
| D. | i<sub>p</sub> = 0.7cos(500t + π/4 + 88.5⁰) | 
| Answer» E. | |
| 14. | Find the complementary current from the information provided in the question 4. | 
| A. | i<sub>c</sub> = e<sup>-37.5t</sup>(c<sub>1</sub>cos1290t + c<sub>2</sub>sin1290t) | 
| B. | i<sub>c</sub> = e<sup>-37.5t</sup>(c<sub>1</sub>cos1290t – c<sub>2</sub>sin1290t) | 
| C. | i<sub>c</sub> = e<sup>37.5t</sup>(c<sub>1</sub>cos1290t – c<sub>2</sub>sin1290t) | 
| D. | i<sub>c</sub> = e<sup>37.5t</sup>(c<sub>1</sub>cos1290t + c<sub>2</sub>sin1290t) | 
| Answer» B. i<sub>c</sub> = e<sup>-37.5t</sup>(c<sub>1</sub>cos1290t ‚Äö√Ñ√∂‚àö√ë‚àö¬® c<sub>2</sub>sin1290t) | |
| 15. | The complete solution of the current in the sinusoidal response of R-L-C circuit is? | 
| A. | i = c<sub>1</sub> e<sup>(K<sub>1</sub>+K<sub>2</sub>)t</sup> + c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t</sup> – V/√(R<sup>2</sup>+(1/ωC-ωL)<sup>2</sup> ) cos⁡(ωt+θ+tan<sup>-1</sup>)⁡((1/ωC-ωL)/R)) | 
| B. | i = c<sub>1</sub> e<sup>(K<sub>1</sub>+K<sub>2</sub>)t</sup> + c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t </sup> – V/√(R<sup>2</sup>+(1/ωC-ωL)<sup>2</sup> ) cos⁡(ωt+θ-tan<sup>-1</sup>)⁡((1/ωC-ωL)/R)) | 
| C. | i = c<sub>1</sub> e<sup>(K<sub>1</sub>+K<sub>2</sub>)t</sup> + c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t</sup> + V/√(R<sup>2</sup>+(1/ωC-ωL)<sup>2</sup> ) cos⁡(ωt+θ+tan<sup>-1</sup>)⁡((1/ωC-ωL)/R)) | 
| D. | i = c<sub>1</sub> e<sup>(K<sub>1</sub>+K<sub>2</sub>)t</sup> + c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t </sup> + V/√(R<sup>2</sup>+(1/ωC-ωL)<sup>2</sup> ) cos⁡(ωt+θ-tan<sup>-1</sup>)⁡((1/ωC-ωL)/R)) | 
| Answer» D. i = c<sub>1</sub> e<sup>(K<sub>1</sub>+K<sub>2</sub>)t</sup> + c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t </sup> + V/‚Äö√Ñ√∂‚àö‚Ć‚àö‚àÇ(R<sup>2</sup>+(1/‚âà√¨‚àö¬¢C-‚âà√¨‚àö¬¢L)<sup>2</sup> ) cos‚Äö√Ñ√∂‚àö√ñ¬¨‚àû(‚âà√¨‚àö¬¢t+‚âà√≠‚Äö√†√®-tan<sup>-1</sup>)‚Äö√Ñ√∂‚àö√ñ¬¨‚àû((1/‚âà√¨‚àö¬¢C-‚âà√¨‚àö¬¢L)/R)) | |
| 16. | . In the sinusoidal response of R-L-C circuit, the complementary function of the solution of i is? | 
| A. | i<sub>c</sub> = c<sub>1</sub> e<sup>(K<sub>1</sub>+K<sub>2</sub>)t</sup> + c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t</sup> | 
| B. | i<sub>c</sub> = c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t</sup> + c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t</sup> | 
| C. | i<sub>c</sub> = c<sub>1</sub> e<sup>(K<sub>1</sub>+K<sub>2</sub>)t</sup> + c<sub>1</sub> e<sup>(K<sub>2</sub>-K<sub>1</sub>)t</sup> | 
| D. | i<sub>c</sub> = c<sub>1</sub> e<sup>(K<sub>1</sub>+K<sub>2</sub>)t</sup> +c<sub>1</sub>e<sup>(K<sub>1</sub>+K<sub>2</sub>)t</sup> | 
| Answer» B. i<sub>c</sub> = c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t</sup> + c<sub>1</sub> e<sup>(K<sub>1</sub>-K<sub>2</sub>)t</sup> | |
| 17. | The particular current obtained from the solution of i in the sinusoidal response of R-L-C circuit is? | 
| A. | i<sub>p</sub> = V/√(R<sup>2</sup>+(1/ωC+ωL)<sup>2</sup> ) cos⁡(ωt+θ+tan<sup>-1</sup>)⁡((1/ωC+ωL)/R)) | 
| B. | i<sub>p</sub> = V/√(R<sup>2</sup>+(1/ωC-ωL)<sup>2</sup> ) cos⁡(ωt+θ+tan<sup>-1</sup>)⁡((1/ωC-ωL)/R)) | 
| C. | i<sub>p</sub> = V/√(R<sup>2</sup>+(1/ωC+ωL)<sup>2</sup> ) cos⁡(ωt+θ+tan<sup>-1</sup>)⁡((1/ωC-ωL)/R)) | 
| D. | i<sub>p</sub> = V/√(R<sup>2</sup>+(1/ωC-ωL)<sup>2</sup> ) cos⁡(ωt+θ+tan<sup>-1</sup>)⁡((1/ωC+ωL)/R)) | 
| Answer» C. i<sub>p</sub> = V/‚Äö√Ñ√∂‚àö‚Ć‚àö‚àÇ(R<sup>2</sup>+(1/‚âà√¨‚àö¬¢C+‚âà√¨‚àö¬¢L)<sup>2</sup> ) cos‚Äö√Ñ√∂‚àö√ñ¬¨‚àû(‚âà√¨‚àö¬¢t+‚âà√≠‚Äö√†√®+tan<sup>-1</sup>)‚Äö√Ñ√∂‚àö√ñ¬¨‚àû((1/‚âà√¨‚àö¬¢C-‚âà√¨‚àö¬¢L)/R)) | |