Explore topic-wise MCQs in Network Theory.

This section includes 13 Mcqs, each offering curated multiple-choice questions to sharpen your Network Theory knowledge and support exam preparation. Choose a topic below to get started.

1.

In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 100cos (103t+π/2), resistance R = 20Ω and inductance L = 0.1H. The value of c in the complementary function of ‘i’ is?

A. c = -0.98cos⁡(π/2-78.6o)
B. c = -0.98cos⁡(π/2+78.6o)
C. c = 0.98cos⁡(π/2+78.6o)
D. c = 0.98cos⁡(π/2-78.6o)
Answer» B. c = -0.98cos⁡(π/2+78.6o)
2.

The current flowing through the circuit at t = 0 in the circuit shown below is?

A. 1
B. 2
C. 3
D. 0
Answer» E.
3.

In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 100cos (103t+π/2), resistance R = 20Ω and inductance L = 0.1H. The complete solution of ‘i’ is?

A. i = ce-200t + 0.98cos⁡(1000t-π/2-78.6o)
B. i = ce-200t + 0.98cos⁡(1000t+π/2-78.6o)
C. i = ce-200t + 0.98cos⁡(1000t+π/2+78.6o)
D. i = ce-200t + 0.98cos⁡(1000t-π/2+78.6o)
Answer» C. i = ce-200t + 0.98cos⁡(1000t+π/2+78.6o)
4.

In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 100cos (103t+π/2), resistance R = 20Ω and inductance L = 0.1H. The particular integral of the solution of ‘ip’ is?

A. ip = 0.98cos⁡(1000t+π/2-78.6o)
B. ip = 0.98cos⁡(1000t-π/2-78.6o)
C. ip = 0.98cos⁡(1000t-π/2+78.6o)
D. ip = 0.98cos⁡(1000t+π/2+78.6o)
Answer» B. ip = 0.98cos⁡(1000t-π/2-78.6o)
5.

In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 100cos (103t+π/2), resistance R = 20Ω and inductance L = 0.1H. The complementary function of the solution of ‘i’ is?

A. ic = ce-100t
B. ic = ce100t
C. ic = ce-200t
D. ic = ce200t
Answer» D. ic = ce200t
6.

THE_COMPLETE_SOLUTION_OF_‚ÄÖ√Ñ√∂‚ÀÖ√Ë‚Àւ§I‚ÄÖ√Ñ√∂‚ÀÖ√Ë‚ÀÖ¬•_IN_THE_QUESTION_5_IS??$#

A. i = [-0.98 cos⁡(π/2-78.6<sup>o</sup>)] exp⁡(-200t)+0.98cos⁡(1000t+π/2-78.6<sup>o</sup>)
B. i = [-0.98 cos⁡(π/2-78.6<sup>o</sup>)] exp⁡(-200t)-0.98cos⁡(1000t+π/2-78.6<sup>o</sup>)
C. i = [0.98 cos⁡(π/2-78.6<sup>o</sup>)] exp⁡(-200t)-0.98cos⁡(1000t+π/2-78.6<sup>o</sup>)
D. i = [0.98 cos⁡(π/2-78.6<sup>o</sup>)] exp⁡(-200t)+0.98cos⁡(1000t+π/2-78.6<sup>o</sup>)
Answer» B. i = [-0.98 cos‚Äö√Ñ√∂‚àö√ñ¬¨‚àû(‚âà√¨‚àö√ë/2-78.6<sup>o</sup>)] exp‚Äö√Ñ√∂‚àö√ñ¬¨‚àû(-200t)-0.98cos‚Äö√Ñ√∂‚àö√ñ¬¨‚àû(1000t+‚âà√¨‚àö√ë/2-78.6<sup>o</sup>)
7.

THE_VALUE_OF_C_IN_THE_COMPLEMENTARY_FUNCTION_OF_‚ÄÖ√Ñ√∂‚ÀÖ√Ë‚Àւ§I‚ÄÖ√Ñ√∂‚ÀÖ√Ë‚ÀÖ¬•_IN_THE_QUESTION_5_IS??$#

A. c = -0.98cos⁡(π/2-78.6<sup>o</sup>)
B. c = -0.98cos⁡(π/2+78.6<sup>o</sup>)
C. c = 0.98cos⁡(π/2+78.6<sup>o</sup>)
D. c = 0.98cos⁡(π/2-78.6<sup>o</sup>)
Answer» B. c = -0.98cos‚Äö√Ñ√∂‚àö√ñ¬¨‚àû(‚âà√¨‚àö√ë/2+78.6<sup>o</sup>)
8.

The current flowing through the circuit at t = 0 in the circuit shown in the question 5 is?

A. 1
B. 2
C. 3
D. 0
Answer» E.
9.

The particular integral of the solution of ‘i’ from the information provided in the question 5.$

A. i<sub>p</sub> = 0.98cos⁡(1000t+π/2-78.6<sup>o</sup>)
B. i<sub>p</sub> = 0.98cos⁡(1000t-π/2-78.6<sup>o</sup>)
C. i<sub>p</sub> = 0.98cos⁡(1000t-π/2+78.6<sup>o</sup>)
D. i<sub>p</sub> = 0.98cos⁡(1000t+π/2+78.6<sup>o</sup>)
Answer» B. i<sub>p</sub> = 0.98cos‚Äö√Ñ√∂‚àö√ñ¬¨‚àû(1000t-‚âà√¨‚àö√ë/2-78.6<sup>o</sup>)
10.

The complete solution of the current in the sinusoidal response of R-L circuit is?

A. i = e<sup>-t(R/L)</sup>[V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(θ-tan<sup>-1</sup>)⁡(ωL/R))]+V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(ωt+θ-tan<sup>-1</sup>)⁡(ωL/R))
B. i = e<sup>-t(R/L)</sup>[-V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(θ-tan<sup>-1</sup>)(ωL/R))]-V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(ωt+θ-tan<sup>-1</sup>)⁡(ωL/R))
C. i = e<sup>-t(R/L)</sup>[V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(θ-tan<sup>-1</sup>)⁡(ωL/R))]-V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(ωt+θ-tan<sup>-1</sup>)⁡(ωL/R))
D. i = e<sup>-t(R/L)</sup>[-V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(θ-tan<sup>-1</sup>)⁡(ωL/R))]+V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(ωt+θ-tan<sup>-1</sup>)⁡(ωL/R))
Answer» E.
11.

The value of ‘c’ in complementary function of ‘i’ is?$

A. c = -V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(θ+tan<sup>-1</sup>(ωL/R))
B. c = -V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(θ-tan<sup>-1</sup>(ωL/R))
C. c = V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(θ+tan<sup>-1</sup>(ωL/R))
D. c = V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(θ-tan<sup>-1</sup>(ωL/R))
Answer» C. c = V/‚Äö√Ñ√∂‚àö‚Ć‚àö‚àÇ(R<sup>2</sup>+(‚âà√¨‚àö¬¢L)<sup>2</sup>) cos‚Äö√Ñ√∂‚àö√ñ¬¨‚àû(‚âà√≠‚Äö√†√®+tan<sup>-1</sup>(‚âà√¨‚àö¬¢L/R))
12.

The particular current obtained from the solution of i in the sinusoidal response of R-L circuit is?

A. i<sub>p</sub> = V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(ωt+θ+tan<sup>-1</sup>(ωL/R))
B. i<sub>p</sub> = V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(ωt+θ-tan<sup>-1</sup>(ωL/R))
C. i<sub>p</sub> = V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(ωt-θ+tan<sup>-1</sup>(ωL/R))
D. i<sub>p</sub> = V/√(R<sup>2</sup>+(ωL)<sup>2</sup>) cos⁡(ωt-θ+tan<sup>-1</sup>(ωL/R))
Answer» C. i<sub>p</sub> = V/‚Äö√Ñ√∂‚àö‚Ć‚àö‚àÇ(R<sup>2</sup>+(‚âà√¨‚àö¬¢L)<sup>2</sup>) cos‚Äö√Ñ√∂‚àö√ñ¬¨‚àû(‚âà√¨‚àö¬¢t-‚âà√≠‚Äö√†√®+tan<sup>-1</sup>(‚âà√¨‚àö¬¢L/R))
13.

In the sinusoidal response of R-L circuit, the complementary function of the solution of i is?

A. i<sub>c</sub> = ce<sup>-t(R/L)</sup>
B. i<sub>c</sub> = ce<sup>t(RL)</sup>
C. i<sub>c</sub> = ce<sup>-t(RL)</sup>
D. i<sub>c</sub> = ce<sup>t(R/L)</sup>
Answer» B. i<sub>c</sub> = ce<sup>t(RL)</sup>