Explore topic-wise MCQs in Network Theory.

This section includes 18 Mcqs, each offering curated multiple-choice questions to sharpen your Network Theory knowledge and support exam preparation. Choose a topic below to get started.

1.

Let us assume x (t) = A cos(ωt + φ), What is the final steady state solution for y (t)?

A. A|H(jω)|cos⁡[ωt+Ø+ θ (ω)]
B. A|H(jω)|cos⁡[ωt-Ø+ θ (ω)]
C. A|H(jω)|cos⁡[ωt-Ø- θ (ω)]
D. A|H(jω)|cos⁡[ωt+Ø- θ (ω)]
Answer» B. A|H(jω)|cos⁡[ωt-Ø+ θ (ω)]
2.

Let us assume x (t) = A cos(ωt + φ), what is the value of k1 by considering θ (ω) is?

A. |H(jω)|ej[θ (ω)+Ø]
B. A/2|H(jω)|ej[θ (ω)+Ø]
C. |H(jω)|e-j[θ (ω)+Ø]
D. A/2 |H(jω)|e-j[θ (ω)+Ø]
Answer» C. |H(jω)|e-j[θ (ω)+Ø]
3.

The relation between H (jω) and θ (ω) is?

A. H(jω)=e-jθ (ω)
B. H(jω)=|H(jω)|e-jθ (ω)
C. H(jω)=|H(jω)|ejθ (ω)
D. H(jω)=ejθ (ω)
Answer» D. H(jω)=ejθ (ω)
4.

Let us assume x (t) = A cos(ωt + φ), what is the value of k1?

A. 1/2 H(jω)AejØ
B. H(jω)Ae-jØ
C. H(jω)AejØ
D. 1/2 H(jω)Ae-jØ
Answer» E.
5.

Let us assume x (t) = A cos(ωt + φ), on taking the partial fractions for the response we get?

A. Y(s)=k1/(s-jω)+(k1‘)/(s+jω)+Σterms generated by the poles of H(s)
B. Y(s)=k1/(s+jω)+(k1‘)/(s+jω)+Σterms generated by the poles of H(s)
C. Y(s)=k1/(s+jω)+(k1‘)/(s-jω)+Σterms generated by the poles of H(s)
D. Y(s)=k1/(s-jω)+(k1‘)/(s-jω)+Σterms generated by the poles of H(s)
Answer» B. Y(s)=k1/(s+jω)+(k1‘)/(s+jω)+Σterms generated by the poles of H(s)
6.

Let us assume x (t) = A cos(ωt + φ), what is the s-domain expression?

A. Y(s)=H(s) A(Scos Ø-ω sinØ)/(S2-ω2)
B. Y(s)=H(s) A(Scos Ø+ω sinØ)/(S2+ω2)
C. Y(s)=H(s) A(Scos Ø-ω sinØ)/(S2+ω2)
D. Y(s)=H(s) A(Scos Ø+ω sinØ)/(S2-ω2)
Answer» D. Y(s)=H(s) A(Scos Ø+ω sinØ)/(S2-ω2)
7.

Let us assume x (t) = A cos(ωt + φ), then the Laplace transform of x (t) is?

A. X(S)=A(Scos Ø-ω sinØ)/(S2-ω2)
B. X(S)=A(Scos Ø+ω sinØ)/(S2+ω2)
C. X(S)=A(Scos Ø+ω sinØ)/(S2-ω2)
D. X(S)=A(Scos Ø-ω sinØ)/(S2+ω2)
Answer» E.
8.

In the circuit shown below, if voltage across the capacitor is defined as the output signal of the circuit, then the transfer function is?

A. H(s)=1/(S2 LC-RCS+1)
B. H(s)=1/(S2 LC+RCS+1)
C. H(s)=1/(S2 LC+RCS-1)
D. H(s)=1/(S2 LC-RCS-1)
Answer» C. H(s)=1/(S2 LC+RCS-1)
9.

In the circuit shown below, if current is defined as the response signal of the circuit, then determine the transfer function.

A. H(s)=C/(S2 LC+RCS+1)
B. H(s)=SC/(S2 LC-RCS+1)
C. H(s)=SC/(S2 LC+RCS+1)
D. H(s)=SC/(S2 LC+RCS-1)
Answer» D. H(s)=SC/(S2 LC+RCS-1)
10.

THE_FINAL_STEADY_STATE_SOLUTION_FOR_Y_(T)_IN_THE_QUESTION_4_IS??$

A. A|H(jω) |cos⁡[ωt+Ø+ θ (ω)].
B. A|H(jω) |cos⁡[ωt-Ø+ θ (ω)].
C. A|H(jω) |cos⁡[ωt-Ø- θ (ω)].
D. A|H(jω) |cos⁡[ωt+Ø- θ (ω)].
Answer» B. A|H(j‚âà√¨‚àö¬¢) |cos‚Äö√Ñ√∂‚àö√ñ¬¨‚àû[‚âà√¨‚àö¬¢t-‚Äö√†√∂‚àö‚â§+ ‚âà√≠‚Äö√†√® (‚âà√¨‚àö¬¢)].
11.

THE_VALUE_OF_K1_IN_THE_QUESTION_6_CONSIDERING_‚ÂÀ√≠‚ÄÖ√†√®_(‚ÂÀ√¨‚ÀÖ¬¢)_IS??$#

A. |H(jω)|e<sup>j[θ (ω)+Ø]</sup>
B. A/2|H(jω)|e<sup>j[θ (ω)+Ø]</sup>
C. |H(jω)|e<sup>-j[θ (ω)+Ø]</sup>
D. A/2 |H(jω) | e<sup>-j[θ (ω)+Ø]</sup>
Answer» C. |H(j‚âà√¨‚àö¬¢)|e<sup>-j[‚âà√≠‚Äö√†√® (‚âà√¨‚àö¬¢)+‚Äö√†√∂‚àö‚â§]</sup>
12.

The relation between H (jω) and θ (ω) is?#

A. H(jω)=e<sup>-jθ (ω)</sup>
B. H(jω)=|H(jω)|e<sup>-jθ (ω)</sup>
C. H(jω)=|H(jω)|e<sup>jθ (ω)</sup>
D. H(jω)=e<sup>jθ (ω)</sup>
Answer» D. H(j‚âà√¨‚àö¬¢)=e<sup>j‚âà√≠‚Äö√†√® (‚âà√¨‚àö¬¢)</sup>
13.

The value of k1 in the question 6 is?

A. 1/2 H(jω)Ae<sup>jØ</sup>
B. H(jω)Ae<sup>-jØ</sup>
C. H(jω)Ae<sup>jØ</sup>
D. 1/2 H(jω)Ae<sup>-jØ</sup>
Answer» E.
14.

On taking the partial fractions for the response in the question 4, we get?

A. Y(s)=k<sub>1</sub>/(s-jω)+(k<sub>1</sub><sup>‘</sup>)/(s+jω)+Σterms generated by the poles of H(s)
B. Y(s)=k<sub>1</sub>/(s+jω)+(k<sub>1</sub><sup>‘</sup>)/(s+jω)+Σterms generated by the poles of H(s)
C. Y(s)=k<sub>1</sub>/(s+jω)+(k<sub>1</sub><sup>‘</sup>)/(s-jω)+Σterms generated by the poles of H(s)
D. Y(s)=k<sub>1</sub>/(s-jω)+(k<sub>1</sub><sup>‘</sup>)/(s-jω)+Σterms generated by the poles of H(s)
Answer» B. Y(s)=k<sub>1</sub>/(s+j‚âà√¨‚àö¬¢)+(k<sub>1</sub><sup>‚Äö√Ñ√∂‚àö√ë‚àö‚â§</sup>)/(s+j‚âà√¨‚àö¬¢)+‚âà√≠¬¨¬£terms generated by the poles of H(s)
15.

The s-domain expression for the response for the input mentioned in question 4 is?

A. Y(s)=H(s)A(Scos Ø-ω sinØ)/(S<sup>2</sup>-ω<sup>2</sup> )
B. Y(s)=H(s) A(Scos Ø+ω sinØ)/(S<sup>2</sup>+ω<sup>2</sup> )
C. Y(s)=H(s) A(Scos Ø-ω sinØ)/(S<sup>2</sup>+ω<sup>2</sup> )
D. Y(s)=H(s) A(Scos Ø+ω sinØ)/(S<sup>2</sup>-ω<sup>2</sup> )
Answer» D. Y(s)=H(s) A(Scos ‚Äö√†√∂‚àö‚â§+‚âà√¨‚àö¬¢ sin‚Äö√†√∂‚àö‚â§)/(S<sup>2</sup>-‚âà√¨‚àö¬¢<sup>2</sup> )
16.

Let us assume x (t) = A cos(ωt + φ), then the Laplace transform of x (t) is?$

A. X(S)=A(Scos Ø-ω sinØ)/(S<sup>2</sup>-ω<sup>2</sup> )
B. X(S)=A(Scos Ø+ω sinØ)/(S<sup>2</sup>+ω<sup>2</sup> )
C. X(S)=A(Scos Ø+ω sinØ)/(S<sup>2</sup>-ω<sup>2</sup> )
D. X(S)=A(Scos Ø-ω sinØ)/(S<sup>2</sup>+ω<sup>2</sup> )
Answer» E.
17.

In the circuit shown in question 2, if voltage across the capacitor is defined as the output signal of the circuit, then the transfer function is?

A. H(s)=1/(S<sup>2</sup> LC-RCS+1)
B. H(s)=1/(S<sup>2</sup> LC+RCS+1)
C. H(s)=1/(S<sup>2</sup> LC+RCS-1)
D. H(s)=1/(S<sup>2</sup> LC-RCS-1)
Answer» C. H(s)=1/(S<sup>2</sup> LC+RCS-1)
18.

The transfer function of a system having the input as X(s) and output as Y(s) is?

A. Y(s)/X(s)
B. Y(s) * X(s)
C. Y(s) + X(s)
D. Y(s) – X(s)
Answer» B. Y(s) * X(s)