MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 2651. |
The number of integral terms in the expansion of \[{{\left( \sqrt{3}+\sqrt[8]{5} \right)}^{256}}\] is [AIEEE 2003] |
| A. | 32 |
| B. | 33 |
| C. | 34 |
| D. | 35 |
| Answer» C. 34 | |
| 2652. |
The digit in the unit place of the number \[(183\,!)+{{3}^{183}}\] is [Karnataka CET 2002] |
| A. | 7 |
| B. | 6 |
| C. | 3 |
| D. | 0 |
| Answer» B. 6 | |
| 2653. |
The expression \[{{(2+\sqrt{2})}^{4}}\] has value, lying between [AMU 2001] |
| A. | 134 and 135 |
| B. | 135 and 136 |
| C. | 136 and 137 |
| D. | None of these |
| Answer» C. 136 and 137 | |
| 2654. |
The number of integral terms in the expansion of \[{{({{5}^{1/2}}+{{7}^{1/6}})}^{642}}\] is [Kurukshetra CEE 1996] |
| A. | 106 |
| B. | 108 |
| C. | 103 |
| D. | 109 |
| Answer» C. 103 | |
| 2655. |
If \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}}\] are the coefficients of any four consecutive terms in the expansion of \[{{(1+x)}^{n}}\], then \[\frac{{{a}_{1}}}{{{a}_{1}}+{{a}_{2}}}+\frac{{{a}_{3}}}{{{a}_{3}}+{{a}_{4}}}\] = [IIT 1975] |
| A. | \[\frac{{{a}_{2}}}{{{a}_{2}}+{{a}_{3}}}\] |
| B. | \[\frac{1}{2}\frac{{{a}_{2}}}{({{a}_{2}}+{{a}_{3}})}\] |
| C. | \[\frac{2{{a}_{2}}}{{{a}_{2}}+{{a}_{3}}}\] |
| D. | \[\frac{2{{a}_{3}}}{{{a}_{2}}+{{a}_{3}}}\] |
| Answer» D. \[\frac{2{{a}_{3}}}{{{a}_{2}}+{{a}_{3}}}\] | |
| 2656. |
Find the value of\[\frac{({{18}^{3}}+{{7}^{3}}+3.18.7.25)}{{{3}^{6}}+6.243.2+15.81.4+20.27.8+15.9.16+6.3.32+64}\] [IIT 1960] |
| A. | 1 |
| B. | 5 |
| C. | 25 |
| D. | 100 |
| Answer» B. 5 | |
| 2657. |
The coefficient of two consecutive terms in the expansion of \[{{(1+x)}^{n}}\] will be equal, if |
| A. | n is any integer |
| B. | n is an odd integer |
| C. | n is an even integer |
| D. | None of these |
| Answer» C. n is an even integer | |
| 2658. |
If number of terms in the expansion of \[{{(x-2y+3z)}^{n}}\]are 45, then n= |
| A. | 7 |
| B. | 8 |
| C. | 9 |
| D. | None of these |
| Answer» C. 9 | |
| 2659. |
Number of ways of selection of 8 letters from 24 letters of which 8 are \[a\], 8 are \[b\] and the rest unlike, is given by |
| A. | \[{{2}^{7}}\] |
| B. | \[8\ .\ {{2}^{8}}\] |
| C. | \[10\ .\ {{2}^{7}}\] |
| D. | None of these |
| Answer» D. None of these | |
| 2660. |
A set contains \[(2n+1)\] elements. The number of sub-sets of the set which contain at most \[n\] elements is |
| A. | \[{{2}^{n}}\] |
| B. | \[{{2}^{n+1}}\] |
| C. | \[{{2}^{n-1}}\] |
| D. | \[{{2}^{2n}}\] |
| Answer» E. | |
| 2661. |
The number of divisors of 9600 including 1 and 9600 are [IIT Screening 1993] |
| A. | 60 |
| B. | 58 |
| C. | 48 |
| D. | 46 |
| Answer» D. 46 | |
| 2662. |
In how many ways can Rs. 16 be divided into 4 person when none of them get less than Rs. 3 |
| A. | 70 |
| B. | 35 |
| C. | 64 |
| D. | 192 |
| Answer» C. 64 | |
| 2663. |
If \[^{n}{{P}_{3}}{{+}^{n}}{{C}_{n-2}}=14n\], then \[n=\] |
| A. | 5 |
| B. | 6 |
| C. | 8 |
| D. | 10 |
| Answer» B. 6 | |
| 2664. |
If \[^{n}{{P}_{r}}=840,{{\,}^{n}}{{C}_{r}}=35,\] then \[n\] is equal to [EAMCET 1986] |
| A. | 1 |
| B. | 3 |
| C. | 5 |
| D. | 7 |
| Answer» E. | |
| 2665. |
The number of numbers of 4 digits which are not divisible by 5 are |
| A. | 7200 |
| B. | 3600 |
| C. | 14400 |
| D. | 1800 |
| Answer» B. 3600 | |
| 2666. |
If \[P(n,r)=1680\] and \[C(n,r)=70\], then \[69n+r!=\] [Kerala (Engg.)2005] |
| A. | 128 |
| B. | 576 |
| C. | 256 |
| D. | 625 |
| E. | 1152 |
| Answer» C. 256 | |
| 2667. |
\[^{n}{{P}_{r}}{{\div }^{n}}{{C}_{r}}\] = [MP PET 1984] |
| A. | \[n\,!\] |
| B. | \[(n-r)!\] |
| C. | \[\frac{1}{r!}\] |
| D. | \[r\,!\] |
| Answer» E. | |
| 2668. |
The number of way to sit 3 men and 2 women in a bus such that total number of sitted men and women on each side is 3 [DCE 2005] |
| A. | 5! |
| B. | \[^{6}{{C}_{5}}\times 5!\] |
| C. | \[6!\,{{\times }^{6}}{{P}_{5}}\] |
| D. | \[5!\,{{+}^{6}}{{C}_{5}}\] |
| Answer» C. \[6!\,{{\times }^{6}}{{P}_{5}}\] | |
| 2669. |
The sum of all positive divisors of 960 is [Karnataka CET 2000] |
| A. | 3048 |
| B. | 3087 |
| C. | 3047 |
| D. | 2180 |
| Answer» B. 3087 | |
| 2670. |
The sum \[\sum\limits_{i=0}^{m}{\left( \begin{matrix} 10 \\ i \\ \end{matrix} \right)}\,\left( \begin{matrix} 20 \\ m-i \\ \end{matrix} \right)\,,\] \[\left( \text{where}\,\left( \begin{matrix} p \\ q \\ \end{matrix} \right)\,=0\,\text{if}\,p |
| A. | 5 |
| B. | 15 |
| C. | 10 |
| D. | 20 |
| Answer» C. 10 | |
| 2671. |
If \[^{n}{{P}_{r}}\]= 720.\[^{n}{{C}_{r}},\] then r is equal to [Kerala (Engg.) 2001] |
| A. | 6 |
| B. | 5 |
| C. | 4 |
| D. | 7 |
| Answer» B. 5 | |
| 2672. |
If \[^{n}{{P}_{4}}=24.{{\,}^{n}}{{C}_{5}},\] then the value of n is [Karnataka CET 2001] |
| A. | 10 |
| B. | 15 |
| C. | 9 |
| D. | 5 |
| Answer» D. 5 | |
| 2673. |
Number of divisors of \[n=38808\] (except 1 and n) is [RPET 2000] |
| A. | 70 |
| B. | 68 |
| C. | 72 |
| D. | 74 |
| Answer» B. 68 | |
| 2674. |
An n-digit number is a positive number with exactly \[n\] digits. Nine hundred distinct n-digit numbers are to be formed using only the three digits 2, 5 and 7. The smallest value of \[n\] for which this is possible is [IIT 1998] |
| A. | 6 |
| B. | 7 |
| C. | 8 |
| D. | 9 |
| Answer» C. 8 | |
| 2675. |
The number of ordered triplets of positive integers which are solutions of the equation \[x+y+z=100\] is |
| A. | 6005 |
| B. | 4851 |
| C. | 5081 |
| D. | None of these |
| Answer» C. 5081 | |
| 2676. |
If\[^{n}{{P}_{4}}=30{{\,}^{n}}{{C}_{5}}\], then \[n=\] [MP PET 1995] |
| A. | 6 |
| B. | 7 |
| C. | 8 |
| D. | 9 |
| Answer» D. 9 | |
| 2677. |
If \[^{n}{{C}_{r}}={{\,}^{n}}{{C}_{r-1}}\] and \[^{n}{{P}_{r}}{{=}^{n}}{{P}_{r+1}}\], then the value of n is |
| A. | 3 |
| B. | 4 |
| C. | 2 |
| D. | 5 |
| Answer» B. 4 | |
| 2678. |
The points with position vectors \[60\,\mathbf{i}+3\,\mathbf{j}\], \[40\,\mathbf{i}-8\mathbf{j},\], \[a\,\mathbf{i}-52\,\mathbf{j}\] are collinear, if \[a=\] [RPET 1991; IIT 1983; MP PET 2002] |
| A. | 40 |
| B. | 40 |
| C. | 20 |
| D. | None of these |
| Answer» B. 40 | |
| 2679. |
If the position vectors of the points A, B, C be \[\mathbf{a},\ \mathbf{b}\], \[3\mathbf{a}-2\mathbf{b}\] respectively, then the points A, B, C are [MP PET 1989] |
| A. | Collinear |
| B. | Non-collinear |
| C. | Form a right angled triangle |
| D. | None of these |
| Answer» B. Non-collinear | |
| 2680. |
The vectors \[3\,\mathbf{i}+\mathbf{j}-5\,\mathbf{k}\] and \[a\,\mathbf{i}+b\,\mathbf{j}-15\,\mathbf{k}\]are collinear, if [RPET 1986; MP PET 1988] |
| A. | \[a=3,\,\,b=1\] |
| B. | \[a=9,\,\,b=1\] |
| C. | \[a=3,\,\,b=3\] |
| D. | \[a=9,\,\,b=3\] |
| Answer» E. | |
| 2681. |
If \[A,\,B,\,C\] are the vertices of a triangle whose position vectors are a, b, c and G is the centroid of the \[\Delta ABC,\] then \[\overrightarrow{GA}+\overrightarrow{GB}\,+\overrightarrow{GC}\] is [Karnataka CET 2000] |
| A. | 0 |
| B. | \[\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\] |
| C. | \[\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3}\] |
| D. | \[\frac{\mathbf{a}+\mathbf{b}-\mathbf{c}}{3}\] |
| Answer» B. \[\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\] | |
| 2682. |
If the points \[\mathbf{a}+\mathbf{b},\,\,\mathbf{a}-\mathbf{b}\] and \[\mathbf{a}+k\,\mathbf{b}\] be collinear, then k = |
| A. | 0 |
| B. | 2 |
| C. | 2 |
| D. | Any real number |
| Answer» E. | |
| 2683. |
If the position vectors of the points A, B, C be \[\mathbf{i}+\mathbf{j},\,\,\,\mathbf{i}-\mathbf{j}\] and \[a\,\,\mathbf{i}+b\,\mathbf{j}+c\,\mathbf{k}\] respectively, then the points A, B, C are collinear if |
| A. | \[a=b=c=1\] |
| B. | \[a=1,\,\,b\] and \[c\] are arbitrary scalars |
| C. | \[a=b=c=0\] |
| D. | \[c=0,\,\,a=1\] and b is arbitrary scalars |
| Answer» E. | |
| 2684. |
If \[D,\,E,\,F\] are respectively the mid points of \[AB,\,AC\]and \[BC\] in \[\Delta ABC\], then \[\overrightarrow{BE}\]\[+\overrightarrow{AF}=\] [EAMCET 2003] |
| A. | \[\overrightarrow{DC}\] |
| B. | \[\frac{1}{2}\overrightarrow{BF}\] |
| C. | \[2\overrightarrow{BF}\] |
| D. | \[\frac{3}{2}\overrightarrow{BF}\] |
| Answer» B. \[\frac{1}{2}\overrightarrow{BF}\] | |
| 2685. |
If position vectors of a point A is a + 2b and a divides AB in the ratio \[2:3\], then the position vector of B is [MP PET 2002] |
| A. | 2a ? b |
| B. | b ? 2a |
| C. | a ? 3b |
| D. | b |
| Answer» D. b | |
| 2686. |
If O is origin and C is the mid-point of \[A(2,\,\,-1)\] and \[B(-4,\,3)\]. Then value of \[\overrightarrow{OC}\] is [RPET 2001] |
| A. | i + j |
| B. | i ? j |
| C. | i + j |
| D. | i ? j |
| Answer» D. i ? j | |
| 2687. |
If a and b are P.V. of two points A and B and C divides AB in ratio 2 : 1, then P.V. of C is [RPET 1996] |
| A. | \[\frac{\mathbf{a}+2\mathbf{b}}{3}\] |
| B. | \[\frac{2\mathbf{a}+\mathbf{b}}{3}\] |
| C. | \[\frac{\mathbf{a}+2}{3}\] |
| D. | \[\frac{\mathbf{a}+\mathbf{b}}{2}\] |
| Answer» B. \[\frac{2\mathbf{a}+\mathbf{b}}{3}\] | |
| 2688. |
If position vector of points A, B, C are respectively i, j, k and \[AB=CX,\] then position vector of point X is [MP PET 1994] |
| A. | \[-\,\mathbf{i}+\mathbf{j}+\mathbf{k}\] |
| B. | \[\mathbf{i}-\mathbf{j}+\mathbf{k}\] |
| C. | \[\mathbf{i}+\mathbf{j}-\mathbf{k}\] |
| D. | \[\mathbf{i}+\mathbf{j}+\mathbf{k}\] |
| Answer» B. \[\mathbf{i}-\mathbf{j}+\mathbf{k}\] | |
| 2689. |
The sum of the three vectors determined by the medians of a triangle directed from the vertices is [MP PET 1997] |
| A. | 0 |
| B. | 1 |
| C. | 1 |
| D. | \[\frac{1}{3}\] |
| Answer» B. 1 | |
| 2690. |
If \[\overrightarrow{AO}+\overrightarrow{OB}=\overrightarrow{BO}+\overrightarrow{OC},\] then A, B, C form [IIT 1983] |
| A. | Equilateral triangle |
| B. | Right angled triangle |
| C. | Isosceles triangle |
| D. | Line |
| Answer» D. Line | |
| 2691. |
In a triangle ABC, if \[2\overrightarrow{AC}=3\overrightarrow{CB},\] then \[2\overrightarrow{OA}+3\overrightarrow{OB}\] equals [IIT 1988; Pb. CET 2003] |
| A. | \[5\overrightarrow{OC}\] |
| B. | \[\frac{1}{3}\,(2\mathbf{i}-2\mathbf{j}+\mathbf{k})\] |
| C. | \[\,\overrightarrow{OC}\] |
| D. | None of these |
| Answer» B. \[\frac{1}{3}\,(2\mathbf{i}-2\mathbf{j}+\mathbf{k})\] | |
| 2692. |
If \[\mathbf{p}=7\mathbf{i}-2\mathbf{j}+3\mathbf{k}\] and \[\mathbf{q}=3\mathbf{i}+\mathbf{j}+5\mathbf{k},\] then the magnitude of \[\mathbf{p}-2\mathbf{q}\] is [MP PET 1987] |
| A. | \[\sqrt{29}\] |
| B. | 4 |
| C. | \[\sqrt{62}-2\sqrt{35}\] |
| D. | \[\sqrt{66}\] |
| Answer» E. | |
| 2693. |
ABCDE is a pentagon. Forces \[\overrightarrow{AB},\,\overrightarrow{AE},\,\overrightarrow{DC},\,\overrightarrow{ED}\] act at a point. Which force should be added to this system to make the resultant \[{{\cos }^{-1}}\frac{4}{5}\] [MNR 1984] |
| A. | \[\overrightarrow{AC}\] |
| B. | \[\overrightarrow{AD}\] |
| C. | \[\overrightarrow{BC}\] |
| D. | \[\overrightarrow{BD}\] |
| Answer» D. \[\overrightarrow{BD}\] | |
| 2694. |
If in a triangle \[\overrightarrow{AB}=\mathbf{a},\,\,\overrightarrow{AC}=\mathbf{b}\] and D, E are the mid-points of AB and AC respectively, then \[\overrightarrow{DE}\] is equal to [RPET 1986] |
| A. | \[\frac{\mathbf{a}}{4}-\frac{\mathbf{b}}{4}\] |
| B. | \[\frac{\mathbf{a}}{2}-\frac{\mathbf{b}}{2}\] |
| C. | \[\frac{\mathbf{b}}{4}-\frac{\mathbf{a}}{4}\] |
| D. | \[\frac{\mathbf{b}}{2}-\frac{\mathbf{a}}{2}\] |
| Answer» E. | |
| 2695. |
In the triangle ABC, \[\overrightarrow{AB}=\mathbf{a},\,\,\overrightarrow{AC}=\mathbf{c},\,\,\overrightarrow{BC}=\mathbf{b}\], then [RPET 1984] |
| A. | \[\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}\] |
| B. | \[\mathbf{a}+\mathbf{b}-\mathbf{c}=\mathbf{0}\] |
| C. | \[\mathbf{a}-\mathbf{b}+\mathbf{c}=\mathbf{0}\] |
| D. | \[-\,\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}\] |
| Answer» C. \[\mathbf{a}-\mathbf{b}+\mathbf{c}=\mathbf{0}\] | |
| 2696. |
If C is the middle point of AB and P is any point outside AB, then [MNR 1991; UPSEAT 2000; AIEEE 2005] |
| A. | \[\overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{PC}\] |
| B. | \[\overrightarrow{PA}+\overrightarrow{PB}=2\,\overrightarrow{PC}\] |
| C. | \[\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=0\] |
| D. | \[\overrightarrow{PA}+\overrightarrow{PB}+2\,\overrightarrow{PC}=0\] |
| Answer» C. \[\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=0\] | |
| 2697. |
If the position vectors of the points A and B are \[c=(2\,-2,\,4)\] and \[3\mathbf{i}-\mathbf{j}-3\mathbf{k},\] then what will be the position vector of the mid-point of AB [MP PET 1992] |
| A. | \[\mathbf{i}+2\mathbf{j}-\mathbf{k}\] |
| B. | \[2\mathbf{i}+\mathbf{j}-2\mathbf{k}\] |
| C. | \[2\mathbf{i}+\mathbf{j}-\mathbf{k}\] |
| D. | \[\mathbf{i}+\mathbf{j}-2\mathbf{k}\] |
| Answer» C. \[2\mathbf{i}+\mathbf{j}-\mathbf{k}\] | |
| 2698. |
If the vectors represented by the sides AB and BC of the regular hexagon ABCDEF be a and b, then the vector represented by \[\overrightarrow{AE}\] will be |
| A. | \[2\,\mathbf{b}-\mathbf{a}\] |
| B. | \[\mathbf{b}-\mathbf{a}\] |
| C. | \[2\,\mathbf{a}-\mathbf{b}\] |
| D. | \[\mathbf{a}+\mathbf{b}\] |
| Answer» B. \[\mathbf{b}-\mathbf{a}\] | |
| 2699. |
A and B are two points. The position vector of A is \[6\mathbf{b}-2\mathbf{a}.\] A point P divides the line AB in the ratio 1 : 2. If \[\mathbf{a}-\mathbf{b}\] is the position vector of P, then the position vector of B is given by [MP PET 1993] |
| A. | \[7\mathbf{a}-15\mathbf{b}\] |
| B. | \[7\mathbf{a}+15\mathbf{b}\] |
| C. | \[2\pi /3\] |
| D. | \[15\mathbf{a}+7\mathbf{b}\] |
| Answer» B. \[7\mathbf{a}+15\mathbf{b}\] | |
| 2700. |
The position vector of a point C with respect to B is \[\mathbf{i}+\mathbf{j}\] and that of B with respect to A is \[\mathbf{i}-\mathbf{j}.\] The position vector of C with respect to A is [MP PET 1989] |
| A. | 2 i |
| B. | 2 j |
| C. | 2 j |
| D. | 2 i |
| Answer» B. 2 j | |