

MCQOPTIONS
Saved Bookmarks
This section includes 32 Mcqs, each offering curated multiple-choice questions to sharpen your Mathematics knowledge and support exam preparation. Choose a topic below to get started.
1. |
If f(x) \( = \left\{ {\begin{array}{*{20}{c}} {\rm x;if\;x\;is\;rational}\\ { \rm- x;if\;x\;is\;irrational} \end{array}} \right.\), then which of the following statement is true: |
A. | f(x) is an odd function |
B. | f(x) is continuous at \(x = \frac 1 2\) |
C. | f(x) is continuous at x = 0 |
D. | f(x) is a periodic function |
Answer» B. f(x) is continuous at \(x = \frac 1 2\) | |
2. |
If f(4) = 4, f '(4) = 1, then \(\displaystyle\lim_{x \rightarrow 4} \dfrac{2- \sqrt{f(x)}}{2-\sqrt x}\) is equal to: |
A. | -2 |
B. | 2 |
C. | 1 |
D. | -1 |
Answer» D. -1 | |
3. |
If the function \(f(x)=\dfrac{2x-\sin^{-1}x}{2x+\tan^{-1}x}, x\neq 0\) is continuous at each point of its domain, then the value of f(0) is: |
A. | 2 |
B. | \(\dfrac{1}{3}\) |
C. | \(\dfrac{2}{3}\) |
D. | \(-\dfrac{1}{3}\) |
Answer» C. \(\dfrac{2}{3}\) | |
4. |
\(\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 1 - } \frac{{\sqrt {\rm{\pi }} - \sqrt {2{\rm{si}}{{\rm{n}}^{ - 1}}{\rm{x}}} }}{{\sqrt {1 - {\rm{x}}} }}{\rm{\;}}\)is equal to |
A. | \(\sqrt {\frac{{\rm{\pi }}}{2}}\) |
B. | \(\sqrt {\frac{2}{{\rm{\pi }}}}\) |
C. | \({\rm{\;}}\sqrt {\rm{\pi }}\) |
D. | \(\frac{1}{{\sqrt {2{\rm{\pi }}} }}\) |
Answer» C. \({\rm{\;}}\sqrt {\rm{\pi }}\) | |
5. |
\(\mathop {\lim }\limits_{y \to a} (\sin \frac{{y - a}}{2}\tan \frac{{\pi y}}{{2a}})\) is equal to |
A. | 0 |
B. | 1 |
C. | \(\frac{\pi}{a}\) |
D. | \(-\frac{a}{\pi}\) |
Answer» E. | |
6. |
\(\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to - \infty } \left( {\frac{{\rm{n}}}{{{{\rm{n}}^2} + {1^2}}} + \frac{{\rm{n}}}{{{{\rm{n}}^2} + {2^2}}} + \frac{{\rm{n}}}{{{{\rm{n}}^2} + {3^2}}} + \ldots + \frac{1}{{5{\rm{n}}}}} \right)\) is equal to |
A. | tan-1(3) |
B. | tan-1(2) |
C. | π/4 |
D. | π/2 |
Answer» C. π/4 | |
7. |
If\(\;{\rm{f}}\left( {\rm{x}} \right) = \left[ {\rm{x}} \right] - \left[ {\frac{{\rm{x}}}{4}} \right]\) , x ∈ R, where [x] denotes the greatest integer function, then: |
A. | f is continuous at x = 4 |
B. | \(\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 4 + } {\rm{f}}\left( {\rm{x}} \right){\rm{\;exists\;but\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 4 - } {\rm{f}}\left( {\rm{x}} \right)\) does not exist |
C. | Both \(\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {4^ - }} {\rm{f}}\left( {\rm{x}} \right){\rm{\;and\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 4 + } {\rm{f}}\left( {\rm{x}} \right){\rm{\;}}\)exist but are not equal. |
D. | \(\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 4 - } {\rm{f}}\left( {\rm{x}} \right)\;{\rm{exists\;but}}\;\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 4 + } {\rm{f}}\left( {\rm{x}} \right)\) does not exist |
Answer» B. \(\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 4 + } {\rm{f}}\left( {\rm{x}} \right){\rm{\;exists\;but\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 4 - } {\rm{f}}\left( {\rm{x}} \right)\) does not exist | |
8. |
If \(f\left( x \right) = \sqrt {25 - {x^2},} \) then what is \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\) equal to? |
A. | \( - \frac{1}{{\sqrt {24} }}\) |
B. | \(\frac{1}{{\sqrt {24} }}\) |
C. | \( - \frac{1}{{4\sqrt 3 }}\) |
D. | \(\frac{1}{{4\sqrt 3 }}\) |
Answer» B. \(\frac{1}{{\sqrt {24} }}\) | |
9. |
Let S be the set of all values offor which the tangent to the curvey = f(x) = x3 – x2 – 2x at (x, y) is parallel to the line segment joining the points (1, f(1)) and (-1, f(-1)), then S is equal to: |
A. | \(\left\{ {\frac{1}{3},1} \right\}\) |
B. | \(\left\{ { - \frac{1}{3}, - 1} \right\}\) |
C. | \(\left\{ {\frac{1}{3}, - 1} \right\}\) |
D. | \(\left\{ { - \frac{1}{3},1} \right\}\) |
Answer» E. | |
10. |
\(\mathop {{\rm{lim}}}\limits_{{\rm{y}} \to 0} \frac{{\sqrt {1 + \sqrt {1 + {{\rm{y}}^4}} } - \sqrt 2 }}{{{{\rm{y}}^4}}}\) |
A. | Exists and equals \(\frac{1}{{4\sqrt 2 }}\) |
B. | Exists and equals \(\frac{1}{{2\sqrt 2 \left( {\sqrt 2 + 1} \right)}}\) |
C. | Exists and equals \(\frac{1}{{2\sqrt 2 }}\) |
D. | Does not exist |
Answer» B. Exists and equals \(\frac{1}{{2\sqrt 2 \left( {\sqrt 2 + 1} \right)}}\) | |
11. |
\(\mathop {\lim }\limits_{x \to 0} \frac{{1 - {{\cos }^3}4x}}{{{x^2}}}\) is equal to |
A. | 0 |
B. | 12 |
C. | 24 |
D. | 36 |
Answer» D. 36 | |
12. |
Let f(x) = 5 – |x – 2 | and g(x) = |x + 1|, x ∈ R. If f(x) attains maximum value at α and g(x) attains minimum at β, then \(\mathop {{\rm{lim}}}\limits_{x \to - \alpha \beta } \frac{{\left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right)}}{{{x^2} - 6x + 8}}\) is equal to: |
A. | 1/2 |
B. | -3/2 |
C. | -1/2 |
D. | 3/2 |
Answer» B. -3/2 | |
13. |
If the fourth term in the binomial expansion of \({\left( {\sqrt {\frac{1}{{{x^{1 + {\rm{lo}}{{\rm{g}}_{10}}x}}}}} + {x^{\frac{1}{{12}}}}} \right)^6}\) is equal to 200, and x > 1, then the value of x is: |
A. | 100 |
B. | 10 |
C. | 103 |
D. | 104 |
Answer» C. 103 | |
14. |
For the function f(x) = |x – 3|, which one of the following is not correct? |
A. | The function is not continuous at x = 3 |
B. | The function is continuous at x = 3 |
C. | The function is differentiable at x = 0 |
D. | The function is differentiable at x = -3 |
Answer» B. The function is continuous at x = 3 | |
15. |
If \(\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^4} - 1}}{{{\rm{x}} - 1}} = \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{k}}} \frac{{{{\rm{x}}^3} - {{\rm{k}}^3}}}{{{{\rm{x}}^2} - {{\rm{k}}^2}}}\), then k is: |
A. | 8/3 |
B. | 3/8 |
C. | 3/2 |
D. | 4/3 |
Answer» B. 3/8 | |
16. |
For each t ∈ R, let [t] be the greatest integer less than or equal to t. Then, \(\mathop {{\rm{lim}}}\limits_{x \to 1 + } \frac{{\left( {1 - \left| x \right| + {\rm{sin}}\left| {1 - x} \right|} \right){\rm{sin}}\left( {\frac{\pi }{2}\left[ {1 - x} \right]} \right)}}{{\left| {1 - x} \right|\left[ {1 - x} \right]}}\) |
A. | Equals 1 |
B. | Equals 0 |
C. | Equals -1 |
D. | Does not exists |
Answer» C. Equals -1 | |
17. |
Consider the following in respect of the function \({\rm{f}}\left( {\rm{x}} \right) = {\rm{\;}}\left\{ {\begin{array}{*{20}{c}} {2 + {\rm{x}},{\rm{\;\;x}} \ge 0}\\ {2 - {\rm{x}},{\rm{\;\;x}} < 0} \end{array}} \right.\)1. \(\mathop {\lim }\limits_{{\rm{x}} \to 1} {\rm{f}}\left( {\rm{x}} \right)\) does not exist.2. f(x) is differentiable at x = 03. f(x) is continuous at x = 0Which of the above statement is/are correct? |
A. | 1 only |
B. | 3 only |
C. | 2 and 3 only |
D. | 1 and 3 only |
Answer» C. 2 and 3 only | |
18. |
Let K be the set of all real values of x where the function f(x) = sin|x|-|x| + 2(x - π) cos|x| is not differentiable. Then the set K is equal to: |
A. | ϕ (an empty set) |
B. | {π} |
C. | {0} |
D. | {0, π} |
Answer» B. {π} | |
19. |
Examine the continuity of a function f(x) = (x - 2) (x - 3) |
A. | Discontinuous at x = 2 |
B. | Discontinuous at x = 2, 3 |
C. | Continuous everywhere |
D. | Discontinuous at x = 3 |
E. | None of these |
Answer» D. Discontinuous at x = 3 | |
20. |
Let [x] denote the greatest integer less than or equal to x. Then: \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{{\rm{tan}}\left( {\pi {\rm{si}}{{\rm{n}}^2}x} \right) + {{(\left| x \right| - {\rm{sin}}\left( {x\left[ x \right]} \right))}^2}}}{{{x^2}}}\) |
A. | Does not exist |
B. | Equals π |
C. | Equals π + 1 |
D. | Equals 0 |
Answer» B. Equals π | |
21. |
Let f : R → R be differentiable at c ∈ R and f(c) = 0. If g(x) = |f(x)|, then at x = c, g is: |
A. | Not differentiable if f'(c) = 0 |
B. | Differentiable if f'(c) ≠ 0 |
C. | Differentiable if f'(c) = 0 |
D. | Not differentiable |
Answer» D. Not differentiable | |
22. |
If \(f\left( x \right) = \frac{x}{2} - 1\), then on the interval [0, π] which one of the following is correct? |
A. | tan [f(x)], where [⋅] is the greatest integer function, and \(\frac{1}{{f\left( x \right)}}\) are both continuous |
B. | tan [f(x)], where [⋅] is the greatest integer function, and f-1(x) are both continuous |
C. | tan [f(x)], where [⋅] is the greatest integer function, and \(\frac{1}{{f\left( x \right)}}\) are both discontinuous |
D. | tan [f(x)], where [⋅] is the greatest integer function, is discontinuous but \(\frac{1}{{f\left( x \right)}}\) is continuous |
Answer» D. tan [f(x)], where [⋅] is the greatest integer function, is discontinuous but \(\frac{1}{{f\left( x \right)}}\) is continuous | |
23. |
If a tangent to the circle x2 + y2 = 1 intersects the coordinate axes at distinct points P and Q, then the locus of the mid-point of PQ is: |
A. | x2 + y2 – 4x2y2 = 0 |
B. | x2 + y2 – 2xy = 0 |
C. | x2 + y2 – 16x2y2 = 0 |
D. | x2 + y2 – 2x2y2 = 0 |
Answer» B. x2 + y2 – 2xy = 0 | |
24. |
If f(x) is a non-zero polynomial of degree four, having local extreme points at x = -1, 0, 1; then the setS = {x ∈ R : f(x) = f(0)} contains exactly: |
A. | Four irrational numbers. |
B. | Four rational numbers. |
C. | Two irrational and two rational numbers. |
D. | Two irrational and one rational number. |
Answer» E. | |
25. |
Let \(f\left( {x,y} \right) = \;\left\{ {\begin{array}{*{20}{c}} {\frac{{xy}}{{\sqrt {{x^2} + {y^2}} }}\;\;\;{x^2} + {y^2} \ne 0}\\ {0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x = y = 0} \end{array}} \right.\), Then |
A. | f(x, y) is not differentiable at the origin |
B. | f(x, y) is continuous at the origin |
C. | fx (0,0) = f(0,0) |
D. | fy (0,0) = f(0,0) |
Answer» B. f(x, y) is continuous at the origin | |
26. |
For what value of k is the function \(f\left( x \right) = \;\left\{ {\begin{array}{*{20}{c}} {2x + \frac{1}{4},\;\;\;\;\;x < 0}\\ {k,\;\;\;\;\;\;\;x = 0}\\ {{{\left( {x + \frac{1}{2}} \right)}^2},\;\;\;\;\;\;\;x > 0} \end{array}} \right.\) continuous ? |
A. | \(\frac{1}{4}\) |
B. | \(\frac{1}{2}\) |
C. | 1 |
D. | 2 |
Answer» B. \(\frac{1}{2}\) | |
27. |
\(\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to 0} \frac{{{\rm{si}}{{\rm{n}}^2}{\rm{x}}}}{{\sqrt 2 - \sqrt {1 + {\rm{cos\;x}}} }}\) equals: |
A. | \(4\sqrt 2\) |
B. | \(\sqrt 2\) |
C. | \(2\sqrt 2\) |
D. | 4 |
Answer» B. \(\sqrt 2\) | |
28. |
Let g be the greatest integer function. Then the function f(x) = (g(x))2 - g(x) is discontinuous at |
A. | all integers |
B. | all integers except 0 and 1 |
C. | all integers except 0 |
D. | all integers except 1 |
Answer» E. | |
29. |
Let f be a differentiable function such that \({f'}\left( x \right) = 7 - \frac{3}{4}\frac{{f\left( x \right)}}{x}\), (x > 0) and f(1) ≠ 4. Then \(\mathop {{\rm{lim}}}\limits_{x \to {0^ + }} xf\left( {\frac{1}{x}} \right)\): |
A. | Exists and equals \(\frac{4}{{7}}\). |
B. | Exists and equals 4. |
C. | Does not exist. |
D. | Exists and equals 0. |
Answer» C. Does not exist. | |
30. |
Consider the function\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{sin2x}}{{5x}}\;\;\;\;\;\;\;\;\;if\;x \ne 0\;\;\;\;\;\;\;\;\;\;}\\ {\frac{2}{{15}}\;\;\;\;\;if\;x = 0} \end{array}} \right.\)Which one of the following is correct in respect of the function? |
A. | It is not continuous at x = 0 |
B. | it is continuous at every x |
C. | It is not continuous at x = π |
D. | It is continuous at x = 0 |
Answer» B. it is continuous at every x | |
31. |
If f(x) = |x| + |x – 1|, then which one of the followings is correct? |
A. | f(x) is continuous at x = 0 and x = 1 |
B. | f(x) is continuous at x = 0 but not at x = 1 |
C. | f(x) is continuous at x = 1 but not at x = 0 |
D. | f(x) is neither continuous at x = 0 nor at x = 1 |
Answer» B. f(x) is continuous at x = 0 but not at x = 1 | |
32. |
For each x ∈ R, let [x] be the greatest integer less than or equal to x. Then \(\underset{x\to {{0}^{-}}}{\mathop{\text{lim}}}\,\frac{x\left( \left[ x \right]+\left| x \right| \right)\text{sin}\left[ x \right]}{\left| x \right|}\) is equal to: |
A. | - sin 1 |
B. | 1 |
C. | sin 1 |
D. | 0 |
Answer» B. 1 | |