MCQOPTIONS
Saved Bookmarks
| 1. |
For frictionless adiabatic flow of compressive fluid, the Bernoulli's equation with usual notations is |
| A. | \(\frac{k}{{k - 1}}\frac{{{p_1}}}{{{w_1}}} + \frac{{v_1^2}}{{2g}} + {z_1} = \frac{k}{{k - 1}}\frac{{{p_2}}}{{{w_2}}} + \frac{{v_2^2}}{{2g}} + {z_2} + {h_L}\) |
| B. | \(\frac{k}{{k - 1}}\frac{{{p_1}}}{{{w_1}}} + \frac{{v_1^2}}{{2g}} + {z_1} = \frac{k}{{k - 1}}\frac{{{p_2}}}{{{w_2}}} + \frac{{v_2^2}}{{2g}} + {z_2}\) |
| C. | \(\frac{{{p_1}}}{{{w_2}}} + \frac{{v_1^2}}{{2g}} + {z_1} + {H_m}\frac{{{p_2}}}{{{w_2}}} + \frac{{v_2^2}}{{2g}} + {z_2}\) |
| D. | \(\frac{k}{{k - 1}}\frac{{{p_1}}}{{{w_1}}} + \frac{{v_1^2}}{{2g}} + {z_1} + {H_m} = \frac{{{p_2}}}{{{w_2}}} + \frac{{v_2^2}}{{2g}} + {z_2} + {h_L}\) |
| Answer» C. \(\frac{{{p_1}}}{{{w_2}}} + \frac{{v_1^2}}{{2g}} + {z_1} + {H_m}\frac{{{p_2}}}{{{w_2}}} + \frac{{v_2^2}}{{2g}} + {z_2}\) | |