 
			 
			MCQOPTIONS
 Saved Bookmarks
				| 1. | Expand the term \(\rho_{i,j}^{t+\Delta t}\) for Lax-Wendroff technique.Note:t → Current time-stept+Δt → Next time-stepav → Average time-step between t and t+Δ tt-Δ t → Previous time-step | 
| A. | \(\rho_(i,j)^t+(\frac{\partial ρ}{\partial t})_{i,j}^t \Delta t+(\frac{\partial ^2 ρ}{\partial t^2 })_{i,j}^t \frac{(\Delta t)^2}{2} \) | 
| B. | \(\rho_{i,j}^{t+\Delta t}+(\frac{\partial \rho}{\partial t})_{i,j}^{t+\Delta t} \Delta t+(\frac{\partial^2 ρ}{\partial t^2 })_{i,j}^{t+\Delta t}\frac{(\Delta t)^2}{2}\) | 
| C. | \(\rho_{i,j}^{av}+(\frac{\partial \rho}{\partial t})_{i,j}^{av} \Delta t+(\frac{\partial ^2 ρ}{\partial t^2 })_{i,j}^{av}\frac{(\Delta t)^2}{2}\) | 
| D. | \(\rho_{i,j}^{t-\Delta t}+(\frac{\partial \rho}{\partial t})_{i,j}^{t-\Delta t} \Delta t+(\frac{\partial^2 \rho}{\partial t^2})_{i,j}^{t-\Delta t}\frac{(\Delta t)^2}{2}\) | 
| Answer» B. \(\rho_{i,j}^{t+\Delta t}+(\frac{\partial \rho}{\partial t})_{i,j}^{t+\Delta t} \Delta t+(\frac{\partial^2 ρ}{\partial t^2 })_{i,j}^{t+\Delta t}\frac{(\Delta t)^2}{2}\) | |