Explore topic-wise MCQs in Design Steel Structures.

This section includes 20 Mcqs, each offering curated multiple-choice questions to sharpen your Design Steel Structures knowledge and support exam preparation. Choose a topic below to get started.

1.

The inclination of tension field is

A. tan(c/d)
B. tan(d/c)c) tan-1(c/d)d) tan-1(d/
C. tan-1(c/d)
D. tan(d/c)c) tan-1(c/d)d) tan-1(d/c)
Answer» E.
2.

What is the expression for Ψ in the fv for nominal shear strength according to tension field method is given by

A. 1.5 τb sin2φ
B. sin2φ
C. 1.5 τb
D. 1.5 τb /sin2φ
Answer» B. sin2φ
3.

The value of fv in the nominal shear strength according to tension field method is given by

A. [fyw2+3 τb2+Ψ2]0.5+Ψ
B. [fyw2-3 τb2+Ψ2]0.5-Ψ
C. [fyw2-3 τb2-Ψ2] -Ψ
D. [fyw2+3 τb2+Ψ2]+Ψ
Answer» C. [fyw2-3 τb2-Ψ2] -Ψ
4.

The value of kv in the elastic critical shear stress equation for c/d < 1 is given by

A. 4.0 – [5.35/(c/d)].
B. 4.0 + [5.35/(c/d)2].
C. 5.35 + [4/(c/d)2].d) 5.35 – [4/(c/
D. ].b) 4.0 + [5.35/(c/d)2].c) 5.35 + [4/(c/d)2].d) 5.35 – [4/(c/d)].
Answer» C. 5.35 + [4/(c/d)2].d) 5.35 – [4/(c/
5.

The value of τb in the nominal shear strength equation according to simple post-critical method is given by

A. fyw / √ λw
B. fyw/λw
C. fyw/λw²
D. fyw/(√3 λw²)
Answer» E.
6.

THE_VALUE_OF_FV_IN_THE_NOMINAL_SHEAR_STRENGTH_ACCORDING_TO_TENSION_FIELD_METHOD_IS_GIVEN_BY?$

A. [f<sub>yw</sub><sup>2</sup>+3 τ<sub>b</sub><sup>2</sup>+Ψ<sup>2</sup>]<sup>0.5</sup>+Ψ
B. [f<sub>yw</sub><sup>2</sup>-3 τ<sub>b</sub><sup>2</sup>+Ψ<sup>2</sup>]<sup>0.5</sup>-Ψ
C. [f<sub>yw</sub><sup>2</sup>-3 τ<sub>b</sub><sup>2</sup>-Ψ<sup>2</sup>] -Ψ
D. [f<sub>yw</sub><sup>2</sup>+3 τ<sub>b</sub><sup>2</sup>+Ψ<sup>2</sup>]+Ψ
Answer» C. [f<sub>yw</sub><sup>2</sup>-3 ‚âà√¨‚àö√´<sub>b</sub><sup>2</sup>-‚âà√≠¬¨√Ü<sup>2</sup>] -‚âà√≠¬¨√Ü
7.

The inclination of tension field is$

A. tan(c/d)
B. tan(d/c)
C. tan<sup>-1</sup>(c/d)
D. tan<sup>-1</sup>(d/c)
Answer» E.
8.

What is the expression for Ψ in the fv for nominal shear strength according to tension field method is given by$#

A. 1.5 τ<sub>b</sub> sin2φ
B. sin2φ
C. 1.5 τ<sub>b</sub>
D. 1.5 τ<sub>b</sub> /sin2φ
Answer» B. sin2‚âà√¨‚àö√∫
9.

Which of the following expression for reduced plastic moment capacity is correct?

A. M<sub>fr</sub> = 0.25b<sub>f</sub>t<sub>f</sub><sup>2</sup>f<sub>yf</sub> {1-[N<sub>f</sub>/( b<sub>f</sub>t<sub>f</sub>f<sub>yf</sub>/γ<sub>m0</sub>)<sup>2</sup>]}
B. M<sub>fr</sub> = b<sub>f</sub>t<sub>f</sub>f<sub>yf</sub> {1-[N<sub>f</sub>/( b<sub>f</sub>t<sub>f</sub>f<sub>yf</sub>/γ<sub>m0</sub>)]}
C. M<sub>fr</sub> = 0.25b<sub>f</sub>t<sub>f</sub> {1+[N<sub>f</sub>/( b<sub>f</sub>t<sub>f</sub>f<sub>yf</sub>/γ<sub>m0</sub>)]}
D. M<sub>fr</sub> = 0.25b<sub>f</sub> {1+[N<sub>f</sub>( b<sub>f</sub>t<sub>f</sub>f<sub>yf</sub>γ<sub>m0</sub>)<sup>2</sup>]}
Answer» B. M<sub>fr</sub> = b<sub>f</sub>t<sub>f</sub>f<sub>yf</sub> {1-[N<sub>f</sub>/( b<sub>f</sub>t<sub>f</sub>f<sub>yf</sub>/‚âà√≠‚Äö√¢‚Ä¢<sub>m0</sub>)]}
10.

The anchorage length of tension field is

A. s = (2 sinφ)(M<sub>fr</sub>/f<sub>yw</sub>t<sub>w</sub>)<sup>0.5</sup>
B. s = (2/ sinφ)(M<sub>fr</sub>/f<sub>yw</sub>t<sub>w</sub>)
C. s = (2/ sinφ)(M<sub>fr</sub>/f<sub>yw</sub>t<sub>w</sub>)<sup>0.5</sup>
D. s = (2/ sinφ)(M<sub>fr</sub>f<sub>yw</sub>t<sub>w</sub>)
Answer» D. s = (2/ sin‚âà√¨‚àö√∫)(M<sub>fr</sub>f<sub>yw</sub>t<sub>w</sub>)
11.

Which of the following is an expression for width of tension field?

A. w<sub>tf</sub> = d sinφ + (c-s<sub>c</sub>-s<sub>t</sub>)cosφ
B. w<sub>tf</sub> = d cosφ + (c-s<sub>c</sub>-s<sub>t</sub>)sinφ
C. w<sub>tf</sub> = d cosφ – (c+s<sub>c</sub>-s<sub>t</sub>)sinφ
D. w<sub>tf</sub> = d sinφ – (c+s<sub>c</sub>-s<sub>t</sub>)cosφ
Answer» C. w<sub>tf</sub> = d cos‚âà√¨‚àö√∫ ‚Äö√Ñ√∂‚àö√ë‚àö¬® (c+s<sub>c</sub>-s<sub>t</sub>)sin‚âà√¨‚àö√∫
12.

What is the value of nominal shear strength according to tension field method?

A. A<sub>v</sub>τ<sub>b</sub>
B. 0.9w<sub>tf</sub>t<sub>w</sub>f<sub>v</sub>sinφ
C. A<sub>v</sub>τ<sub>b</sub> – 0.9w<sub>tf</sub>t<sub>w</sub>f<sub>v</sub>sinφ
D. A<sub>v</sub>τ<sub>b</sub> + 0.9w<sub>tf</sub>t<sub>w</sub>f<sub>v</sub>sinφ
Answer» E.
13.

Which of the following conditions are true when tension field method is used?

A. it is based on pre-buckling strength
B. c/d < 1.0
C. it may not be used for webs with intermediate stiffeners
D. it may be used for webs with intermediate stiffeners
Answer» E.
14.

The value of kv in the elastic critical shear stress equation for c/d < 1 is given by

A. 4.0 – [5.35/(c/d)].
B. 4.0 + [5.35/(c/d)<sup>2</sup>].
C. 5.35 + [4/(c/d)<sup>2</sup>].
D. 5.35 – [4/(c/d)].
Answer» C. 5.35 + [4/(c/d)<sup>2</sup>].
15.

The elastic critical shear stress of the web is given by

A. k<sub>v</sub>π<sup>2</sup>/[12(1+μ<sup>2</sup>)(d/t<sub>w</sub>)<sup>2</sup>].
B. k<sub>v</sub>π<sup>2</sup>E/[12(1+μ<sup>2</sup>)(d/t<sub>w</sub>)<sup>2</sup>].
C. k<sub>v</sub>π<sup>2</sup>E/[12(1-μ<sup>2</sup>)(d/t<sub>w</sub>)<sup>2</sup>].
D. k<sub>v</sub>E/[12(1-μ<sup>2</sup>)(d/t<sub>w</sub>)].
Answer» D. k<sub>v</sub>E/[12(1-‚âà√≠¬¨‚à´<sup>2</sup>)(d/t<sub>w</sub>)].
16.

The value of non-dimensional web slenderness ratio in the nominal shear strength equation according to simple post-critical method is given by

A. √(f<sub>yw</sub>/(√3τ<sub>cr,e</sub>))
B. (f<sub>yw</sub>/(√3τ<sub>cr,e</sub>))
C. (f<sub>yw</sub>/(τ<sub>cr,e</sub>))
D. (f<sub>yw</sub>/(√3τ<sub>cr,e</sub>))<sup>2</sup>
Answer» B. (f<sub>yw</sub>/(‚Äö√Ñ√∂‚àö‚Ć‚àö‚àÇ3‚âà√¨‚àö√´<sub>cr,e</sub>))
17.

The value of τb in the nominal shear strength equation according to simple post-critical method is given by$

A. f<sub>yw</sub> / √ λ<sub>w</sub>
B. f<sub>yw</sub>/λ<sub>w</sub>
C. f<sub>yw</sub>/λ<sub>w</sub>²
D. f<sub>yw</sub>/(√3 λ<sub>w</sub>²)
Answer» E.
18.

The nominal shear strength according to simple post-critical method is given by

A. A<sub>v</sub>
B. A<sub>v</sub>τ<sub>b</sub>
C. τ<sub>b</sub>
D. A<sub>v</sub> /τ<sub>b</sub>
Answer» C. ‚âà√¨‚àö√´<sub>b</sub>
19.

What will happen when d/tw is sufficiently low?

A. web will yield under buckling before shear
B. web will yield under shear before buckling
C. web will not yield under shear
D. web will not yield under both shear and buckling
Answer» C. web will not yield under shear
20.

The shear capacity of web comprises of strength

A. before onset of buckling strength only
B. post buckling strength only
C. before onset of buckling strength and post buckling strength
D. compression strength
Answer» D. compression strength