 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.
| 1. | When the finite volume approach is used, if the general form is given asFluxT=FluxC C+FluxC C +FluxV | 
| A. | nThe superscript o indicates the older time step, the value of FluxC while using the second-order upwind Euler scheme is ________ | 
| B. | ( frac{3 rho_C^o V_C}{2 Delta t} ) | 
| C. | (- frac{3 rho_C^o V_C}{2 Delta t} ) | 
| D. | ( frac{2 rho_C^o V_C}{ Delta t} ) | 
| E. | (- frac{2 rho_C^o V_C}{ Delta t} ) | 
| Answer» E. (- frac{2 rho_C^o V_C}{ Delta t} ) | |
| 2. | The numerical dispersion term of the second-order upwind Euler scheme is of ____________ | 
| A. | third-order | 
| B. | second-order | 
| C. | first-order | 
| D. | no dispersion | 
| Answer» B. second-order | |
| 3. | How many numerical diffusion terms does the second-order upwind Euler scheme have? | 
| A. | Infinity | 
| B. | No diffusion term | 
| C. | One term | 
| D. | Two terms | 
| Answer» C. One term | |
| 4. | Which of these time-steps are needed to approximate the value at time-step ( frac{ Delta t}{2} ) using the second-order upwind Euler scheme for finite volume approach? | 
| A. | t- ( frac{ Delta t}{2} ) and t-2 t | 
| B. | t and t- t | 
| C. | t- t and t-2 t | 
| D. | t and t-2 t | 
| Answer» D. t and t-2 t | |
| 5. | What is the equivalent of ( C C)t+ t/2 using the second-order upwind Euler scheme for finite volume approach? | 
| A. | ( frac{3}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> | 
| B. | ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> | 
| C. | ( frac{3}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> | 
| D. | ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> | 
| Answer» D. ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> | |
| 6. | Which of these terms cause instability in the Crank-Nicolson scheme when used for finite volume approach? | 
| A. | Anti-diffusion term | 
| B. | Anti-dispersive term | 
| C. | Diffusion term | 
| D. | Dispersive term | 
| Answer» E. | |
| 7. | The results using the Crank-Nicolson scheme for finite volume approach can be reformulated using the ________ | 
| A. | implicit first-order Euler scheme | 
| B. | implicit and explicit first-order Euler schemes | 
| C. | explicit first-order Euler scheme | 
| D. | central difference scheme | 
| Answer» C. explicit first-order Euler scheme | |
| 8. | The stability of the Crank-Nicolson scheme for finite volume approach is constrained by ________ | 
| A. | CFL number | 
| B. | Peclet number | 
| C. | Time-step size | 
| D. | Spatial grid size | 
| Answer» B. Peclet number | |
| 9. | Which of these time-steps are used to approximate the value at time-step t- ( frac{ Delta t}{2} ) using the Crank-Nicolson scheme for finite volume approach? | 
| A. | t and t+ t | 
| B. | t and t- t | 
| C. | t and t- ( frac{ Delta t}{2} ) | 
| D. | t and t+ ( frac{ Delta t}{2} ) | 
| Answer» C. t and t- ( frac{ Delta t}{2} ) | |
| 10. | What is the equivalent of ( C C)t+ t/2 using the Crank-Nicolson scheme for finite volume approach? | 
| A. | ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> | 
| B. | ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> | 
| C. | ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>-( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> | 
| D. | ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup> ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> | 
| Answer» B. ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> | |