

MCQOPTIONS
Saved Bookmarks
This section includes 47 Mcqs, each offering curated multiple-choice questions to sharpen your Digital Signal Processing knowledge and support exam preparation. Choose a topic below to get started.
1. |
The parallel form realization is also known as normal form representation. |
A. | True |
B. | False |
Answer» B. False | |
2. |
The determinant |F-λI|=0 yields the characteristic polynomial of the matrix F. |
A. | True |
B. | False |
Answer» B. False | |
3. |
What is the condition to call a number λ is an Eigen value of F and a nonzero vector U is the associated Eigen vector? |
A. | (F+λI)U=0 |
B. | (F-λI)U=0 |
C. | F-λI=0 |
D. | None of the mentioned |
Answer» C. F-λI=0 | |
4. |
A closed form solution of the state space equations is easily obtained when the system matrix F is? |
A. | Transpose |
B. | Symmetric |
C. | Identity |
D. | Diagonal |
Answer» E. | |
5. |
If we interchange the rows and columns of the matrix F, then the system is called as ______________ |
A. | Identity system |
B. | Diagonal system |
C. | Transposed system |
D. | None of the mentioned |
Answer» D. None of the mentioned | |
6. |
From the definition of state of a system, the system consists of only one component called memory less component. |
A. | True |
B. | False |
Answer» C. | |
7. |
Find the dynamics of the circuit. |
A. | R1I1(s) + LsI1 (s) + LsI2 (s) = V(s)\(Ls{{I}_{2}}\left( s \right)+~{{R}_{2}}{{I}_{2}}\left( s \right)+\frac{1}{cs{{I}_{2}}\left( s \right)}+Ls{{I}_{1}}\left( s \right)=~0~\) |
B. | R1I1 (s) + LsI1(s) – LsI2(s) = V(s)LsI2(s) + R2I2 (S) + Cs I2 (s) + LsI1(s) = 0 |
C. | R1I1(s) + LsI1 (s) + LsI2(s) = V(s)\(L{{s}_{2}}\left( s \right)+~{{R}_{2}}{{I}_{2}}\left( s \right)+\frac{1}{Cs}{{I}_{2}}\left( s \right)-Ls{{I}_{1}}\left( s \right)=0\) |
D. | R1I1 (s) + LsI1(s) – LsI2(S) = V(s)\(Ls{{I}_{2}}\left( s \right)+{{R}_{2}}{{I}_{2}}\left( s \right)+\frac{1}{Cs}{{I}_{2}}\left( s \right)-Ls{{I}_{1}}\left( s \right)=0\) |
Answer» E. | |
8. |
Dynamics of system is described by \(\frac{{m{d^2}y}}{{dt}} + \frac{{bdy}}{{dt}} + ky = u\) where m, b, k are constants, y, u are time varying quantities. How many state variables are required for this system to be represented in state-space form? |
A. | 1 |
B. | 3 |
C. | 4 |
D. | 2 |
Answer» E. | |
9. |
For the given circuit, which one of the following is the correct state equation? |
A. | \(\frac{d}{{dt}}\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 4}&4\\ { - 2}&{ - 4} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0&4\\ 4&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{i_1}}\\ {{i_2}} \end{array}} \right]\) |
B. | \(\frac{d}{{dt}}\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 4}&{ - 4}\\ { - 2}&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 4&4\\ 4&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{i_1}}\\ {{i_2}} \end{array}} \right]\) |
C. | \(\frac{d}{{dt}}\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4&{ - 4}\\ { - 2}&{ - 4} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0&4\\ 4&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{i_1}}\\ {{i_2}} \end{array}} \right]\) |
D. | \(\frac{d}{{dt}}\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 4}&{ - 4}\\ { - 2}&{ - 4} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 4&0\\ 0&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{i_1}}\\ {{i_2}} \end{array}} \right]\) |
Answer» B. \(\frac{d}{{dt}}\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 4}&{ - 4}\\ { - 2}&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} v\\ i \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 4&4\\ 4&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{i_1}}\\ {{i_2}} \end{array}} \right]\) | |
10. |
A network is described by the state model as\({{\dot{x}}_{1}}=2{{x}_{1}}-{{x}_{2}}+3u\)\({{\dot{x}}_{2}}=-4{{x}_{2}}-u\)\(y=3{{x}_{1}}-2{{x}_{2}}\)The transfer function H(s) \(\left( { = \frac{{Y\left( s \right)}}{{U\left( s \right)}}} \right)\) is |
A. | \(\frac{{11s + 35}}{{\left( {s - 2} \right)\left( {s + 4} \right)}}\) |
B. | \(\frac{{11s - 35}}{{\left( {s - 2} \right)\left( {s + 4} \right)}}\) |
C. | \(\frac{{11s + 38}}{{\left( {s - 2} \right)\left( {s + 4} \right)}}\) |
D. | \(\frac{{11s - 38}}{{\left( {s - 2} \right)\left( {s + 4} \right)}}\) |
Answer» B. \(\frac{{11s - 35}}{{\left( {s - 2} \right)\left( {s + 4} \right)}}\) | |
11. |
linear time-invariant single-input single-output system has a state space model given by \(\frac{{dx}}{{dt}} = Fx + Gu;y = Hx\)Where,\(F = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 4}&{ - 2} \end{array}} \right];\;G = \left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right];\;H = \left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)Here, x is the sate vector, u is the input and y is the output.The damping ratio of the system is |
A. | 0.25 |
B. | 0.5 |
C. | 1 |
D. | 2 |
Answer» C. 1 | |
12. |
Consider the linear system \(\dot x = \left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 2}\end{array}} \right]x\), with initial condition \(x\left( 0 \right) = \left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\). The solution x(t) for this system is |
A. | \(x\left( t \right) = \left[ {\begin{array}{*{20}{c}}{{e^{ - t}}}&{t{e^{ - 2t}}}\\0&{{e^{ - 2t}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\) |
B. | \(x\left( t \right) = \left[ {\begin{array}{*{20}{c}}{{e^{ - t}}}&0\\0&{{e^{2t}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\) |
C. | \(x\left( t \right) = \left[ {\begin{array}{*{20}{c}}{{e^{ - t}}}&{ - {t^2}{e^{ - 2t}}}\\0&{{e^{ - 2t}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\) |
D. | \(x\left( t \right) = \left[ {\begin{array}{*{20}{c}}{{e^{ - t}}}&0\\0&{{e^{ - 2t}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\) |
Answer» E. | |
13. |
From the figure, obtain state equation |
A. | \(\left[ {\dot X} \right] = \left[ {\begin{array}{*{20}{c}} 0&{ - 3}\\ { - 2}&4 \end{array}} \right]\left[ X \right] + \left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right]u\) |
B. | \(\left[ {\dot X} \right] = \left[ {\begin{array}{*{20}{c}} -2&{ 4}\\ { 0}&-3 \end{array}} \right]\left[ X \right] + \left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right]u\) |
C. | \(\left[ {\dot X} \right] = \left[ {\begin{array}{*{20}{c}} 0&{ - 3}\\ { - 2}&4 \end{array}} \right]\left[ X \right] + \left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right]u\) |
D. | \(\left[ {\dot X} \right] = \left[ {\begin{array}{*{20}{c}} -2&{ 4}\\ { 0}&-3 \end{array}} \right]\left[ X \right] + \left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right]u\) |
Answer» C. \(\left[ {\dot X} \right] = \left[ {\begin{array}{*{20}{c}} 0&{ - 3}\\ { - 2}&4 \end{array}} \right]\left[ X \right] + \left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right]u\) | |
14. |
For the system governed by the set of equations:\(\begin{array}{l}\frac{{d{x_1}}}{{dt}} = 2{x_1} + {x_2} + u\\d{x_2}/dt = -2{x_1} + u\\y = 3{x_1}\end{array}\)the transfer function \(Y\left( s \right)/U\left( s \right)\) is given by |
A. | \(\frac{{3\left( {s + 1} \right)}}{{{s^2}-2s + 2}}\) |
B. | \(\frac{{s + 1}}{{{s^2}-2s + 1}}\) |
C. | \(\frac{{3\left( {2s + 1} \right)}}{{{s^2}\;-2s + 1}}\) |
D. | \(\frac{{3\left( {2s + 1} \right)}}{{{s^2}\;-2s + 2}}\) |
Answer» B. \(\frac{{s + 1}}{{{s^2}-2s + 1}}\) | |
15. |
A second-order LTI system is described by the following state equations.\(\frac{d}{{dt}}{x_1}\left( t \right) - {x_2}\left( t \right) = 0\)\(\frac{d}{{dt}}{x_2}\left( t \right) + 2{x_1}\left( t \right) + 3{x_2}\left( t \right) = r\left( t \right)\) where x1(t) and x2(t) are the two state variables and r(t) denotes the input. The output c(t) = x1(t). The system is |
A. | undamped (oscillatory) |
B. | underdamped |
C. | critically damped |
D. | overdamped |
Answer» E. | |
16. |
A system has the state variable representation \(\dot X = \begin{bmatrix} 0 & 1 \\\ 0 & -1 \end{bmatrix} X + \begin{bmatrix} 0 \\\ 1 \end{bmatrix} u : y = \begin{bmatrix} 1 & 1 \end{bmatrix}X\). Its transfer function is |
A. | 1 |
B. | \(\frac 1 s\) |
C. | \(\frac {1}{s + 1}\) |
D. | \(\frac {1}{s^2}\) |
Answer» C. \(\frac {1}{s + 1}\) | |
17. |
Consider the state space system expressed by the signal flow diagram shown in the figure.The corresponding system is |
A. | always controllable |
B. | always observable |
C. | always stable |
D. | always unstable |
Answer» B. always observable | |
18. |
Let the state-space representation of an LTI system be ẋ(t) = A x(t) + B u(t), y(t) = C x(t) + d u(t) where A, B, C are matrices, d is a scalar, u(t) is the input to the system, and y(t) is its output. Let B = [0 0 1]T and d = 0. Which one of the following options for A and C will ensure that the transfer function of this LTI system is \(H\left( s \right) = \frac{1}{{{s^3} + 3{s^2} + 2s + 1}} = ?\) |
A. | \(A = \left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ { - 1}&{ - 2}&{ - 3} \end{array}} \right]and\;C = \;\left[ {\begin{array}{*{20}{c}} 1&0&0 \end{array}} \right]\) |
B. | \(A = \left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ { - 3}&{ - 2}&{ - 1} \end{array}} \right]and\;C = \;\left[ {\begin{array}{*{20}{c}} 1&0&0 \end{array}} \right]\) |
C. | \(A = \left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ { - 1}&{ - 2}&{ - 3} \end{array}} \right]and\;C = \;\left[ {\begin{array}{*{20}{c}} 0&0&1 \end{array}} \right]\) |
D. | \(A = \left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ { - 3}&{ - 2}&{ - 1} \end{array}} \right]and\;C = \;\left[ {\begin{array}{*{20}{c}} 0&0&1 \end{array}} \right]\) |
Answer» B. \(A = \left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ { - 3}&{ - 2}&{ - 1} \end{array}} \right]and\;C = \;\left[ {\begin{array}{*{20}{c}} 1&0&0 \end{array}} \right]\) | |
19. |
Consider the following standard state-space description of a linear time-invariant single input single output system:\(\dot x = Ax + Bu,y = Cx + Du\)Which one of the following statements about the transfer function should be true if D ≠ 0? |
A. | The system is stable |
B. | The system is strictly proper |
C. | The system is low pass |
D. | The system is of type zero |
Answer» B. The system is strictly proper | |
20. |
Number of state variables of discrete-time system, described by\(y[n] - \frac{3}{4}y[n - 1] + \frac{1}{8}y[n - 2] = x[n]\) is |
A. | 2 |
B. | 3 |
C. | 4 |
D. | 1 |
Answer» B. 3 | |
21. |
All the constant – N loci in G-plane intersect the real axis in points |
A. | -1 and origin |
B. | -0.5 and +0.5 |
C. | -1 and +1 |
D. | Origin and +1 |
Answer» B. -0.5 and +0.5 | |
22. |
Consider a system governed by the following equations\(\frac{{d{x_1}\left( t \right)}}{{dt}} = {x_2}\left( t \right) - {x_1}\left( t \right)\)\(\frac{{d{x_2}\left( t \right)}}{{dt}} = {x_1}\left( t \right) - {x_2}\left( t \right)\)The initial conditions are such that \({x_1}\left( 0 \right) < {x_2}\left( 0 \right) < \;\infty .\) Let \({x_{1f}} = \mathop {\lim }\limits_{t \to \infty } {x_1}\left( t \right)\) and \({x_{2f}} = \mathop {\lim }\limits_{t \to \infty } {x_2}\left( t \right)\). Which one of the following is true? |
A. | \({x_{1f}} < {x_{2f}} < \infty\) |
B. | \({x_{2f}} < {x_{1f}} < \infty\) |
C. | \({x_{1f}} = \;{x_{2f}} < \infty\) |
D. | \({x_{1f}} = {x_{2f}} = \infty\) |
Answer» D. \({x_{1f}} = {x_{2f}} = \infty\) | |
23. |
Consider the following properties attributed to state model of a system:1. State model is unique.2. Transfer function for the system is unique.3. State model can be derived from transfer function of the system.Which of the above statements are correct? |
A. | 1, 2 and 3 |
B. | 1 and 2 only |
C. | 2 and 3 only |
D. | 1 and 3 only |
Answer» D. 1 and 3 only | |
24. |
A second-order system represented by state variables has \(A = \left[ {\begin{array}{*{20}{c}} -2&-4\\ 1&0 \end{array}} \right]\)The values of natural frequency and damping factor are respectively |
A. | 2 and 0.5 |
B. | 2 and 1 |
C. | 1 and 2 |
D. | 0.5 and 2 |
Answer» B. 2 and 1 | |
25. |
Bounded-input bounded-output stability implies asymptotic stability for1. Completely controllable system2. Completely observable system3. Uncontrollable system4. Unobservable systemWhich of the above statements are correct? |
A. | 1 and 4 only |
B. | 1 and 2 only |
C. | 2 and 3 only |
D. | 3 and 4 only |
Answer» C. 2 and 3 only | |
26. |
Consider a state-variable model of a system\(\left[ {\begin{array}{*{20}{c}} {{{\dot x}_1}}\\ {{{\dot x}_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - \alpha }&{ - 2\beta } \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0\\ \alpha \end{array}} \right]r\)\(y = \left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right]\)where y is the output, and r is the input. The damping ratio ξ and the undamped natural frequency ωn (rad/sec) of the system are given by |
A. | \({\rm{\xi }} = \frac{{\rm{\beta }}}{{\sqrt \alpha }};{\omega _n} = \sqrt \alpha \) |
B. | \({\rm{\xi }} = \sqrt \alpha ;{\omega _n} = \frac{\beta }{{\sqrt \alpha }}\) |
C. | \({\rm{\xi }} = \frac{{\sqrt \alpha }}{\beta };{\omega _n} = \sqrt \beta\) |
D. | \({\rm{\xi }} = \sqrt \beta ;{\omega _n} = \sqrt \alpha\) |
Answer» B. \({\rm{\xi }} = \sqrt \alpha ;{\omega _n} = \frac{\beta }{{\sqrt \alpha }}\) | |
27. |
A system is described by\(\dot x\left( t \right) = \left[ {\begin{array}{*{20}{c}}0&1&0\\3&0&2\\{ - 12}&{ - 7}&{ - 6}\end{array}} \right]x\left( t \right) + \left[ {\begin{array}{*{20}{c}}1\\0\\2\end{array}} \right]u\left( t \right)\)\(y\left( t \right) = \left[ {\begin{array}{*{20}{c}}1&0&0\end{array}} \right]x\left( t \right)\)Its Eigenvalues are |
A. | 1, 2, 3 |
B. | 2, 2, 3 |
C. | 12, 6, 7 |
D. | -1, -2, -3 |
Answer» E. | |
28. |
A second-order linear time-invariant system is described by the following state equations\(\frac{{\rm{d}}}{{{\rm{dt}}}}{{\rm{x}}_1}\left( {\rm{t}} \right) + 2{{\rm{x}}_1}\left( {\rm{t}} \right) = 3{\rm{u}}\left( {\rm{t}} \right)\)\( \frac{{\rm{d}}}{{{\rm{dt}}}}{{\rm{x}}_2}\left( {\rm{t}} \right) + {{\rm{x}}_2}\left( {\rm{t}} \right) = {\rm{u}}\left( {\rm{t}} \right) \)where x1(t) and x2(t) are the two-state variables and u(t) denotes the input. If the output c(t) = x1(t), then the system is: |
A. | controllable but not observable |
B. | observable but not controllable |
C. | both controllable and observable |
D. | neither controllable nor observable |
Answer» B. observable but not controllable | |
29. |
In the signal flow diagram given in the figure, \({u_1}\;and\;{u_2}\) are possible inputs whereas \({y_1}\;and\;{y_2}\) are possible output. When would the SISO system derived from this diagram be controllable and observable? |
A. | When \({u_1}\) is the only input and \({y_1}\) is the only output |
B. | When \({u_2}\) is the only input and \({y_1}\) is the only output |
C. | When \({u_1}\) is the only input and \({y_2}\) is the only output |
D. | When \({u_2}\) is the only input and \({y_2}\) is the only output |
Answer» C. When \({u_1}\) is the only input and \({y_2}\) is the only output | |
30. |
Consider the state – space model\(\left[ {\begin{array}{*{20}{c}} {{{\dot x}_1}}\\ {{{\dot x}_2}}\\ {{{\dot x}_3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&1&0\\ 0&{ - 1}&0\\ 0&0&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0\\ 4\\ 0 \end{array}} \right]u\)\(y = \left[ {\begin{array}{*{20}{c}} 1&1&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right]\)System is |
A. | Controllable and observable |
B. | Uncontrollable and observable |
C. | Uncontrollable and Unobservable |
D. | Controllable and Unobservable |
Answer» C. Uncontrollable and Unobservable | |
31. |
In the state variable model of a system, the square matrix ϕ(t) that converts the initial states of the system x(0) to a new state x(t) at a later time t is called: |
A. | controller matrix |
B. | process matrix |
C. | state transition matrix |
D. | plant matrix |
Answer» D. plant matrix | |
32. |
In the state model of a linear system the output equation is represented as: |
A. | Y(t) = C X(t) + D U(t) |
B. | Ẋ(t) = A X(t) + B U̇(t) |
C. | Y(t) = A X(t) + B U(t) |
D. | Ẋ(t) = C X(t) + D U̇(t) |
Answer» B. Ẋ(t) = A X(t) + B U̇(t) | |
33. |
A system is represented by \(3\dfrac{dy}{dt}+2y=u\), what is the transfer function to the system? |
A. | \(\dfrac{Y\left( s\right)}{U\left( s\right)}=\dfrac{1}{s^2+2s+3}\) |
B. | \(\dfrac{Y\left( s\right)}{U\left( s\right)}=\dfrac{1}{3s+2}\) |
C. | \(\dfrac{Y\left( s\right)}{U\left( s\right)}=\dfrac{s+1}{3s+1}\) |
D. | \(\dfrac{Y\left( s\right)}{U\left( s\right)}=\dfrac{1}{2s+3}\) |
Answer» C. \(\dfrac{Y\left( s\right)}{U\left( s\right)}=\dfrac{s+1}{3s+1}\) | |
34. |
A state-space representation of a system is given by:\(A=\left[ \begin{matrix} 0 & 1 \\ -2 & 0 \\ \end{matrix} \right],~y=\left[ 1~-1 \right],~x\left( 0 \right)=\left[ \begin{matrix} 1 \\ 1 \\ \end{matrix} \right]\)The time response of the system will be ______. |
A. | sin √2t |
B. | \(-\frac{1}{\sqrt{2}}\sin \sqrt{2}t\) |
C. | \(\frac{3}{\sqrt{2}}\sin \sqrt{2}t\) |
D. | \(\frac{1}{\sqrt{2}}\sin \sqrt{2}t\) |
Answer» D. \(\frac{1}{\sqrt{2}}\sin \sqrt{2}t\) | |
35. |
Consider a system described by the state model\(\dot{X}=\left[ \begin{matrix} 2 & 1 \\ -1 & 2 \\ \end{matrix} \right] X + \left[ \begin{matrix} 1 \\ 1 \\ \end{matrix} \right] U\)Y = [1 1] XThe system is |
A. | controllable but not observable |
B. | uncontrollable and observable |
C. | both controllable and observable |
D. | neither controllable nor observable |
Answer» D. neither controllable nor observable | |
36. |
A discrete system is represented by the difference equation\(\left[ {\begin{array}{*{20}{c}}{{X_1}\left( {k + 1} \right)}\\{{X_2}\left( {k + 1} \right)}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}a&{a - 1}\\{a + 1}&a\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{X_1}\left( k \right)}\\{{X_2}\left( k \right)}\end{array}} \right]\)It has initial conditions X1(0) = 1; X2(0) = 0. The pole locations of the system for a = 1, are |
A. | 1 ± j0 |
B. | -1 ± j0 |
C. | ±1 + j0 |
D. | 0 ± j1 |
Answer» B. -1 ± j0 | |
37. |
How many vector equations forms the state model of the linear system? |
A. | 4 |
B. | 2 |
C. | 3 |
D. | 1 |
Answer» C. 3 | |
38. |
THE_PARALLEL_FORM_REALIZATION_IS_ALSO_KNOWN_AS_NORMAL_FORM_REPRESENTATION.?$ |
A. | True |
B. | False |
Answer» B. False | |
39. |
The determinant |F- λI|=0 yields the characteristic polynomial of the matrix F?# |
A. | True |
B. | False |
Answer» B. False | |
40. |
What is the condition to call a number λ is an Eigen value of F and a nonzero vector U is the associated Eigen vector?# |
A. | (F+ λI)U=0 |
B. | (F- λI)U=0 |
C. | F- λI=0 |
D. | None of the mentioned |
Answer» C. F- ‚âà√≠¬¨‚Ñ¢I=0 | |
41. |
A closed form solution of the state space equations is easily obtained when the system matrix F is: |
A. | Transpose |
B. | Symmetric |
C. | Identity |
D. | Diagonal |
Answer» E. | |
42. |
A single input-single output system and its transpose have identical impulse responses and hence the same input-output relationship. |
A. | True |
B. | False |
Answer» B. False | |
43. |
If we interchange the rows and columns of the matrix F, then the system is called as: |
A. | Identity system |
B. | Diagonal system |
C. | Transposed system |
D. | None of the mentioned |
Answer» D. None of the mentioned | |
44. |
From the definition of state of a system ,the system consists of only one component called memory less component. |
A. | True |
B. | False |
Answer» C. | |
45. |
Which of the following gives the complete definition of the state of a system at time n0? |
A. | Amount of information at n0 determines output signal for n≥n0 |
B. | Input signal x(n) for n≥n0 determines output signal for n≥n0 |
C. | Input signal x(n) for n≥0 determines output signal for n≥n0 |
D. | Amount of information at n0+input signal x(n) for n≥n0 determines output signal for n≥n0 |
Answer» E. | |
46. |
State variables provide information about all the internal signals in the system. |
A. | True |
B. | False |
Answer» B. False | |
47. |
The state space or the internal description of the system still involves a relationship between the input and output signals, what are the additional set of variables it also involves? |
A. | System variables |
B. | Location variables |
C. | State variables |
D. | None of the mentioned |
Answer» D. None of the mentioned | |