 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.
| 1. | The Spalart-Allmaras model is best suited for ___________ | 
| A. | turbulent jet flows | 
| B. | turbulent mixing layers | 
| C. | turbulent boundary layers with slight pressure gradients | 
| D. | turbulent boundary layers with adverse pressure gradients | 
| Answer» E. | |
| 2. | The rate of dissipation of kinematic eddy viscosity parameter is Cw1ρ\((\frac{\tilde{ν}}{κy})^2 f_w\). What is the length scale used here? | 
| A. | κy | 
| B. | (κy)2 | 
| C. | \(\frac{C_{w1}}{y}\) | 
| D. | \(\frac{y}{C_{w1}} \) | 
| Answer» B. (κy)2 | |
| 3. | The rate of production of the kinematic eddy viscosity parameter is related to ___________ | 
| A. | rate of dissipation of kinetic energy | 
| B. | turbulence frequency | 
| C. | vorticity | 
| D. | kinetic energy | 
| Answer» D. kinetic energy | |
| 4. | Expand the Reynolds stress term \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}}\) for the Spalart-Allmaras model. | 
| A. | \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = \rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_i}+\frac{\partial U_j}{\partial x_j})\) | 
| B. | \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = \rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_j}+\frac{\partial U_j}{\partial x_i})\) | 
| C. | \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = 2\rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_i}+\frac{\partial U_j}{\partial x_j})\) | 
| D. | \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = 2\rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_j}+\frac{\partial U_j}{\partial x_i}) \) | 
| Answer» C. \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = 2\rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_i}+\frac{\partial U_j}{\partial x_j})\) | |
| 5. | Near the wall, the first wall damping function tends to ___________ | 
| A. | -1 | 
| B. | 1 | 
| C. | 0 | 
| D. | ∞ | 
| Answer» D. ∞ | |
| 6. | At high Reynolds numbers, the first wall damping function becomes ___________ | 
| A. | -1 | 
| B. | 1 | 
| C. | 0 | 
| D. | ∞ | 
| Answer» C. 0 | |
| 7. | The first wall damping function in the Spalart-Allmaras model is a function of ___________ | 
| A. | the product of the dynamic eddy viscosity parameter and the dynamic eddy viscosity | 
| B. | the ratio of the dynamic eddy viscosity parameter and the dynamic eddy viscosity | 
| C. | the product of the kinematic eddy viscosity parameter and the kinematic eddy viscosity | 
| D. | the ratio of the kinematic eddy viscosity parameter and the kinematic eddy viscosity | 
| Answer» E. | |
| 8. | In the Spalart-Allmaras model, the dynamic eddy viscosity in terms of the kinematic eddy viscosity parameter (v) is given by __________ (Note: fν1 is the wall damping function and ρ is the density of flow). | 
| A. | ρvfν1 | 
| B. | (ρv) ⁄ fν1 | 
| C. | (ρfν1) ⁄ v | 
| D. | v ⁄ (ρfν1) | 
| Answer» B. (ρv) ⁄ fν1 | |
| 9. | The transport equation in the Spalart-Allmaras model is for the transport of ___________ | 
| A. | kinematic eddy viscosity parameter | 
| B. | kinematic eddy viscosity | 
| C. | dynamic eddy viscosity parameter | 
| D. | dynamic eddy viscosity | 
| Answer» B. kinematic eddy viscosity | |
| 10. | The Spalart-Allmaras model differs from the RANS equations by ___________ | 
| A. | four extra transport equations | 
| B. | one extra transport equation | 
| C. | two extra transport equations | 
| D. | three extra transport equations | 
| Answer» C. two extra transport equations | |