MCQOPTIONS
Saved Bookmarks
This section includes 902 Mcqs, each offering curated multiple-choice questions to sharpen your Electronics & Communication Engineering knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
If f(t) ↔ F(jω), ↔ |
| A. | F(jω) |
| B. | [F(jω)]n |
| C. | (jω)n F(jω) |
| D. | [D]. |
| Answer» D. [D]. | |
| 102. |
eAt can be expanded as |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» C. [C]. | |
| 103. |
If then, f(0+) and f(∞) are given by |
| A. | 0 and 2 |
| B. | 2, 0 |
| C. | 0, 1 |
| D. | , 0 |
| Answer» C. 0, 1 | |
| 104. |
A probability density function is given by p(x) = Ke-x2/2 for -∞ < x < ∞ , The value of K should be |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» B. [B]. | |
| 105. |
Laplace transform of eat cos (at) is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | none of these |
| Answer» B. [B]. | |
| 106. |
Give that is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | None of these |
| Answer» C. [C]. | |
| 107. |
The z transform of fk = ak is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» B. [B]. | |
| 108. |
If and A + B is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» B. [B]. | |
| 109. |
The Fourier series representation of a periodic current (2 + 62 cos ωt +48 sin 2ωt) A. The effective value is |
| A. | (2 + 6 + 24) A |
| B. | 8 A |
| C. | 6 A |
| D. | 2 A |
| Answer» C. 6 A | |
| 110. |
Consider the following sets of values of E, R and C for the circuit in the given figure. 2 V, 1 Ω, 1.25 F1.6 V, 0.8 Ω, 1 F1.6 V, 1 Ω, 0.8 F2 V, 1.25 Ω, 1 F Which of these of values will ensure that the state equation is valid? |
| A. | 1 and 4 |
| B. | 1 and 2 |
| C. | 3 and 4 |
| D. | 2 and 3 |
| Answer» E. | |
| 111. |
Fourier transform of e-a|t| is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» C. [C]. | |
| 112. |
If v(t) = 0 for t < 0 and v(t) = e -at for t ≥ 0, V(jω) = |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» C. [C]. | |
| 113. |
Given that h(t) = 10e-10t u(t) and e(t) = sin 10t u(t). The Laplace transform of f(t) = h(t - t) e(t)dt is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» D. [D]. | |
| 114. |
If x(t) and its first derivative are Laplace transformable and Laplace of transform x(t) is X(s), then x(t) is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» B. [B]. | |
| 115. |
If δ(t) denotes a unit impulse, Laplace transform of is |
| A. | 1 |
| B. | s2 |
| C. | s |
| D. | s-2 |
| Answer» C. s | |
| 116. |
The Fourier transform of f(t) = cos ω0t is |
| A. | p[δω0 + δ(- ω0)] |
| B. | p[δ(ω - ω0) + δ(ω + ω0)] |
| C. | p[δω0 - δ(- ω0)] |
| D. | p[δ(ω - ω0) - δ(ω + ω0)] |
| Answer» C. p[δω0 - δ(- ω0)] | |
| 117. |
Fourier transform of the unit step function (i.e., u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0) is |
| A. | pδ (ω) |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» D. [D]. | |
| 118. |
In Laplace transforms s = σ + jω. Which of the following represents true natue of s. Select your answer using the given codes σ has a damping effectσ is responsible for convergence of integral f(t)e-st dtσ has a value less than zero Codes: |
| A. | 1, 2 and 3 |
| B. | 1 and 2 |
| C. | 2 and 3 |
| D. | 1 and 3 |
| Answer» C. 2 and 3 | |
| 119. |
For the signal in the given figure the Fourier transform is Then the Fourier transform of the signal in the given figure |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» C. [C]. | |
| 120. |
The inverse Fourier transform of the function F(ω) = is |
| A. | sin ωt |
| B. | cos ωt |
| C. | sgnt |
| D. | u(t) |
| Answer» D. u(t) | |
| 121. |
As per mormal distribution the probability of an error between limits a and b is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» B. [B]. | |
| 122. |
The energy associated with a function f(t) is. In terms of Fourier transform, E = |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» B. [B]. | |
| 123. |
If the poles of H(z) are at |
| A. | [A]. |
| B. | z = 1 and z = 3 |
| C. | [C]. |
| D. | z = -1 and z = -3 |
| Answer» B. z = 1 and z = 3 | |
| 124. |
Z transform of [(Xk±k0)] = |
| A. | z±k0 X(z) |
| B. | z±k0 X(z) |
| C. | [C]. |
| D. | none of the above |
| Answer» B. z±k0 X(z) | |
| 125. |
If for k ≥ 0 and xk = 0 for k < 0, z transform of the sequence x is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» B. [B]. | |
| 126. |
If xk = 2k for k ≤ 0 and xk = 0 for k ≥ 0, Z transform of the sequence x is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» E. | |
| 127. |
If xk = 0 for k < 0 and xk = 2k for k 3 0, X(z) i.e., Z transform of sequence x is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» B. [B]. | |
| 128. |
A voltage v = 5 + 50 sin ωt/ + 5 sin 5 ωt is applied to a pure capacitor of capacitance 1 ωF. If f/= 314 rad/sec, current is |
| A. | 1 + 0.0157 cos 314 t + 0.00785 cos 1570 t |
| B. | 0.0157 cos 314 t + 0.00785 cos 1570 t |
| C. | 0.0157 sin 314 t + 0.00785 sin 1570 t |
| D. | 0.0157 sin (314 t / + 45°) + 0.00785 sin (1570 t + 45°) |
| Answer» C. 0.0157 sin 314 t + 0.00785 sin 1570 t | |
| 129. |
If ξ f(t) = F(jω), ξf(t-a) = |
| A. | F(jω) e-jωa |
| B. | F(jω) ejωa |
| C. | [C]. |
| D. | a F(jω) ejωa |
| Answer» B. F(jω) ejωa | |
| 130. |
For the wave i = I0 + I1m sin ωt + I3m sin 3ωt, the rms value is |
| A. | I = (I20 + I21m + I23m)0.5 |
| B. | [B]. |
| C. | I = 0.707 (I20 + I21m + I23m)0.5 |
| D. | none of these |
| Answer» C. I = 0.707 (I20 + I21m + I23m)0.5 | |
| 131. |
The function A est where s = s + jω represents |
| A. | A phasor whose magnitude changes with time |
| B. | A phasor whose frequency is ω |
| C. | A phasor rotating in counterclockwise direction at angular frequency ω and whose magnitude increases with t |
| D. | A phasor rotating in clockwise direction at angular frequency ω and whose magnitude increases with t |
| Answer» D. A phasor rotating in clockwise direction at angular frequency ω and whose magnitude increases with t | |
| 132. |
The Laplace transform of sin ∝t is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» B. [B]. | |
| 133. |
For the function f(t) = e-at, the Laplace transform is |
| A. | [A]. |
| B. | [B]. |
| C. | [C]. |
| D. | [D]. |
| Answer» E. | |
| 134. |
A discrete-time signal is given as\(x\left[ n \right] = \cos \frac{{\pi n}}{9} + \sin \left[ {\frac{{\pi n}}{7} + \frac{1}{2}} \right]\)The period N for the periodic signal is |
| A. | 126 |
| B. | 32 |
| C. | 252 |
| D. | 64 |
| Answer» B. 32 | |
| 135. |
Consider impulse responseh(t) = -sin t ; -π < t < π, the system is: |
| A. | unstable, causal |
| B. | stable, causal |
| C. | stable, non-causal |
| D. | unstable, non-causal |
| Answer» D. unstable, non-causal | |
| 136. |
If the input x(t) and output y(t) of a system are related as y(t) = max (0, x(t)), then the system is |
| A. | linear and time-invariant |
| B. | linear and time-variant |
| C. | non-linear and time-variant |
| D. | non-linear and time-invariant |
| Answer» E. | |
| 137. |
In which system does the output at present instant depends on past inputs and outputs? |
| A. | Invertible systems |
| B. | Dynamic systems |
| C. | Static systems |
| D. | Linear systems |
| Answer» C. Static systems | |
| 138. |
Find the first derivative of the signal. X(t) = t[u(t) – u(t – a)], a > 0 |
| A. | u(t) + u(t – a) – aδ(t –a) |
| B. | u(t) – δ(t – a)- aδ(t – a) |
| C. | u(t) – u(t – a) + aδ(t – a) |
| D. | u(t) – u(t – a) –aδ(t – a) |
| Answer» E. | |
| 139. |
\(\mathop \smallint \nolimits_{ - 7}^2 \left( {{t^2} + {t^3} + 1} \right)\delta \left( {t - 3} \right)dt = \_\_\_\_\) |
| A. | 3 |
| B. | 37 |
| C. | 13 |
| D. | 0 |
| Answer» E. | |
| 140. |
Consider an ideal low pass filter. Such a discrete-time system is: |
| A. | always realizable physically |
| B. | never realizable physically |
| C. | a non-linear system |
| D. | a linear, causal system |
| Answer» C. a non-linear system | |
| 141. |
A unit step function on integration results in a: |
| A. | Unit doublet |
| B. | Unit step function |
| C. | Unit parabolic function |
| D. | Unit ramp function |
| Answer» E. | |
| 142. |
An input signal \(\rm x(t) = 2 + 5 \sin{(100πt)}\) is sampled with a sampling frequency of \(\rm 400\ Hz\) and applied to the system whose transfer function is represented by\(\rm \frac{{Y\left( z \right)}}{{X\left( z \right)}} = \frac{1}{N}\left( {\frac{{1 - {z^{ - N}}}}{{1 - {z^{ - 1}}}}} \right)\)where, \(\rm N\) represents the number of samples per cycle. The output \(\rm y[n]\) of the system under steady state is |
| A. | \(\rm 0\) |
| B. | \(\rm 1\) |
| C. | \(\rm 2\) |
| D. | \(\rm 5\) |
| Answer» D. \(\rm 5\) | |
| 143. |
Determine whether the following signals are energy signals, power signals, or neither.(a) x(t) = e-at u(t), a > 0(b) x[n] = 2ej3n |
| A. | (a) is power signal (b) is energy signal |
| B. | (a) and (b) are power signals |
| C. | (a) is energy signal (b) is power signal |
| D. | (a) and (b) are energy signals |
| Answer» D. (a) and (b) are energy signals | |
| 144. |
In analog communication, a unit impulse response of a causal system is ______ for t < 0. |
| A. | 0 |
| B. | 1 |
| C. | infinite |
| D. | -1 |
| Answer» B. 1 | |
| 145. |
Identify the correct condition for an even signal. |
| A. | X(t) = X(n) |
| B. | X(t) = –X(–t) |
| C. | X(t) = X(–t) |
| D. | X(t) = X(t + n) |
| Answer» D. X(t) = X(t + n) | |
| 146. |
Consider the following statements with respect to the bilinear transformation method of digital filter design:1. It preserves the number of poles and thereby the order of the filter.2. It maintains the phase response of the analog filter.3. The impulse response of the analog filter is not preserved.Which of the above statements are correct? |
| A. | 1, 2 and 3 |
| B. | 1 and 2 only |
| C. | 1 and 3 only |
| D. | 2 and 3 only |
| Answer» D. 2 and 3 only | |
| 147. |
Consider an impulse response h[n] = {-3, -1, 2, 1, 3}, system is ______ phase and ______ pass filter. |
| A. | Linear, low |
| B. | Linear, high |
| C. | Linear, band |
| D. | Non-linear, band |
| Answer» E. | |
| 148. |
For a periodic signal v(t) = 30 sin 100t + 10 cos 300t + 6sin (500t + π\4), the fundamental frequency in rad/s |
| A. | 100 |
| B. | 300 |
| C. | 500 |
| D. | 1500 |
| Answer» B. 300 | |
| 149. |
Consider a cascade system with unit step u(t) as input and h1(t) = e-2t(t)u(t) and h2(t) = e-t(t)u(t) respectively. The impulse response of overall system is: |
| A. | h(t) = x2(t) e-tu(t) |
| B. | h(t) = [e-t – e-2t]u(t) |
| C. | h(t) = t2 e-2t u(t) |
| D. | h(t) = 2t2 e-2t u(t) |
| Answer» C. h(t) = t2 e-2t u(t) | |
| 150. |
Consider the signal x(t) = 10 cos (10πt + π/7) + 4 sin (30πt + π/8). Its power lying within the frequency band 10 Hz to 20 Hz is |
| A. | 4 W |
| B. | 8 W |
| C. | 50 W |
| D. | 58 W |
| Answer» C. 50 W | |