Explore topic-wise MCQs in Computational Fluid Dynamics.

This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.

1.

The flux limiter Ψ(r) of the second-order upwind scheme is __________

A. r2
B. \(\frac{1}{2}r\)
C. 2r
D. r
Answer» E.
2.

Find the normalized functional relationship between φf and φC for a uniform grid while using the second-order upwind scheme?

A. \(\tilde{\phi_f}=\frac{1}{2}\tilde{\phi_C}\)
B. \(\tilde{\phi_f}=-\frac{1}{2}\tilde{\phi_C}\)
C. \(\tilde{\phi_f}=\frac{3}{2}\tilde{\phi_C}\)
D. \(\tilde{\phi_f}=-\frac{3}{2}\tilde{\phi_C}\)
Answer» D. \(\tilde{\phi_f}=-\frac{3}{2}\tilde{\phi_C}\)
3.

Which statement is correct?

A. The second-order upwind scheme is never stable
B. The second-order upwind scheme is always stable
C. The second-order upwind scheme is conditionally stable
D. The second-order upwind scheme is always unstable
Answer» C. The second-order upwind scheme is conditionally stable
4.

What is the first term in the truncation error of the second-order upwind scheme?(Note: φP is the flow variable at the central node).

A. \(-\frac{3}{8}(\Delta x)^2 \phi_P”’\)
B. \(-\frac{3}{8}(\Delta x) \phi_P”’\)
C. \(-\frac{3}{8}(\Delta x)^2 \phi_P”\)
D. \(-\frac{3}{8}(\Delta x) \phi_P”\)
E. .a) \(-\frac{3}{8}(\Delta x)^2 \phi_P”’\) b) \(-\frac{3}{8}(\Delta x) \phi_P”’\) c) \(-\frac{3}{8}(\Delta x)^2 \phi_P”\) d) \(-\frac{3}{8}(\Delta x) \phi_P”\)
Answer» B. \(-\frac{3}{8}(\Delta x) \phi_P”’\)
5.

Consider the stencil. Assume a uniform grid. What is \(\dot{m_w} \phi_{wv}\) according to the second-order upwind scheme?(Note: \(\dot{m}\) and φ are the mass flow rate and flow variable).

A. \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max⁡(\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max⁡(-\dot{m_w},0)\)
B. \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max⁡(\dot{m_w},0)-(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max⁡(-\dot{m_w},0)\)
C. \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max⁡(-\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max⁡(-\dot{m_w},0)\)
D. \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max⁡(-\dot{m_w},0)-(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max⁡(-\dot{m_w},0)\)
E. .a) \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max⁡(\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max⁡(-\dot{m_w},0)\) b) \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max⁡(\dot{m_w},0)-(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max⁡(-\dot{m_w},0)\) c) \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max⁡(-\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max⁡(-\dot{m_w},0)\) d) \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max⁡(-\dot{m_w},0)-(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max⁡(-\dot{m_w},0)\)
Answer» C. \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max⁡(-\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max⁡(-\dot{m_w},0)\)
6.

Consider the stencil. Assume a uniform grid. What is φe according to the second-order upwind scheme?(Note: φ is the flow variable).

A. \(\phi_e=\frac{\phi_P-\phi_W}{2}\)
B. \(\phi_e=\frac{\phi_P+\phi_W}{2}\)
C. \(\phi_e=\frac{3}{2}\phi_P-\frac{1}{2}\phi_W\)
D. \(\phi_e=\frac{3}{2}\phi_P+\frac{1}{2}\phi_W\)
E. .a) \(\phi_e=\frac{\phi_P-\phi_W}{2}\) b) \(\phi_e=\frac{\phi_P+\phi_W}{2}\) c) \(\phi_e=\frac{3}{2}\phi_P-\frac{1}{2}\phi_W\) d) \(\phi_e=\frac{3}{2}\phi_P+\frac{1}{2}\phi_W\)
Answer» D. \(\phi_e=\frac{3}{2}\phi_P+\frac{1}{2}\phi_W\)
7.

Consider the stencil. What is φe according to the second-order upwind scheme?(Note: φ is the flow variable).

A. \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\)
B. \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) c) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) d) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_
C. \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\)
D. \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\)
E. .a) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) b) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) c) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) d) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\)
Answer» E. .a) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) b) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) c) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) d) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\)
8.

The second-order upwind scheme is ___________ than the general upwind scheme.

A. less diffusive
B. more diffusive
C. less accurate
D. less stable
Answer» B. more diffusive
9.

The value at the face in the second order upwind scheme is calculated using _____________

A. interpolation
B. extrapolation
C. weighted average
D. geometric mean
Answer» C. weighted average
10.

The Second Order Upwind (SOU) scheme uses ____________

A. asymmetric linear profile
B. symmetric linear profile
C. asymmetric quadratic profile
D. symmetric quadratic profile
Answer» B. symmetric linear profile