 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.
| 1. | The flux limiter Ψ(r) of the second-order upwind scheme is __________ | 
| A. | r2 | 
| B. | \(\frac{1}{2}r\) | 
| C. | 2r | 
| D. | r | 
| Answer» E. | |
| 2. | Find the normalized functional relationship between φf and φC for a uniform grid while using the second-order upwind scheme? | 
| A. | \(\tilde{\phi_f}=\frac{1}{2}\tilde{\phi_C}\) | 
| B. | \(\tilde{\phi_f}=-\frac{1}{2}\tilde{\phi_C}\) | 
| C. | \(\tilde{\phi_f}=\frac{3}{2}\tilde{\phi_C}\) | 
| D. | \(\tilde{\phi_f}=-\frac{3}{2}\tilde{\phi_C}\) | 
| Answer» D. \(\tilde{\phi_f}=-\frac{3}{2}\tilde{\phi_C}\) | |
| 3. | Which statement is correct? | 
| A. | The second-order upwind scheme is never stable | 
| B. | The second-order upwind scheme is always stable | 
| C. | The second-order upwind scheme is conditionally stable | 
| D. | The second-order upwind scheme is always unstable | 
| Answer» C. The second-order upwind scheme is conditionally stable | |
| 4. | What is the first term in the truncation error of the second-order upwind scheme?(Note: φP is the flow variable at the central node). | 
| A. | \(-\frac{3}{8}(\Delta x)^2 \phi_P”’\) | 
| B. | \(-\frac{3}{8}(\Delta x) \phi_P”’\) | 
| C. | \(-\frac{3}{8}(\Delta x)^2 \phi_P”\) | 
| D. | \(-\frac{3}{8}(\Delta x) \phi_P”\) | 
| E. | .a) \(-\frac{3}{8}(\Delta x)^2 \phi_P”’\) b) \(-\frac{3}{8}(\Delta x) \phi_P”’\) c) \(-\frac{3}{8}(\Delta x)^2 \phi_P”\) d) \(-\frac{3}{8}(\Delta x) \phi_P”\) | 
| Answer» B. \(-\frac{3}{8}(\Delta x) \phi_P”’\) | |
| 5. | Consider the stencil. Assume a uniform grid. What is \(\dot{m_w} \phi_{wv}\) according to the second-order upwind scheme?(Note: \(\dot{m}\) and φ are the mass flow rate and flow variable). | 
| A. | \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max(\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max(-\dot{m_w},0)\) | 
| B. | \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max(\dot{m_w},0)-(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max(-\dot{m_w},0)\) | 
| C. | \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max(-\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max(-\dot{m_w},0)\) | 
| D. | \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max(-\dot{m_w},0)-(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max(-\dot{m_w},0)\) | 
| E. | .a) \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max(\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max(-\dot{m_w},0)\) b) \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max(\dot{m_w},0)-(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max(-\dot{m_w},0)\) c) \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max(-\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max(-\dot{m_w},0)\) d) \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max(-\dot{m_w},0)-(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max(-\dot{m_w},0)\) | 
| Answer» C. \(\dot{m_w}\phi_w=(\frac{3}{2}\phi_P-\frac{1}{2}\phi_W)max(-\dot{m_w},0)+(\frac{3}{2}\phi_W-\frac{1}{2}\phi_{WW}) max(-\dot{m_w},0)\) | |
| 6. | Consider the stencil. Assume a uniform grid. What is φe according to the second-order upwind scheme?(Note: φ is the flow variable). | 
| A. | \(\phi_e=\frac{\phi_P-\phi_W}{2}\) | 
| B. | \(\phi_e=\frac{\phi_P+\phi_W}{2}\) | 
| C. | \(\phi_e=\frac{3}{2}\phi_P-\frac{1}{2}\phi_W\) | 
| D. | \(\phi_e=\frac{3}{2}\phi_P+\frac{1}{2}\phi_W\) | 
| E. | .a) \(\phi_e=\frac{\phi_P-\phi_W}{2}\) b) \(\phi_e=\frac{\phi_P+\phi_W}{2}\) c) \(\phi_e=\frac{3}{2}\phi_P-\frac{1}{2}\phi_W\) d) \(\phi_e=\frac{3}{2}\phi_P+\frac{1}{2}\phi_W\) | 
| Answer» D. \(\phi_e=\frac{3}{2}\phi_P+\frac{1}{2}\phi_W\) | |
| 7. | Consider the stencil. What is φe according to the second-order upwind scheme?(Note: φ is the flow variable). | 
| A. | \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) | 
| B. | \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) c) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) d) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_ | 
| C. | \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) | 
| D. | \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) | 
| E. | .a) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) b) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) c) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) d) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) | 
| Answer» E. .a) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) b) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_w)\) c) \(\phi_e=\phi_P-\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) d) \(\phi_e=\phi_P+\frac{\phi_P-\phi_W}{x_P-x_W}(x_e-x_c)\) | |
| 8. | The second-order upwind scheme is ___________ than the general upwind scheme. | 
| A. | less diffusive | 
| B. | more diffusive | 
| C. | less accurate | 
| D. | less stable | 
| Answer» B. more diffusive | |
| 9. | The value at the face in the second order upwind scheme is calculated using _____________ | 
| A. | interpolation | 
| B. | extrapolation | 
| C. | weighted average | 
| D. | geometric mean | 
| Answer» C. weighted average | |
| 10. | The Second Order Upwind (SOU) scheme uses ____________ | 
| A. | asymmetric linear profile | 
| B. | symmetric linear profile | 
| C. | asymmetric quadratic profile | 
| D. | symmetric quadratic profile | 
| Answer» B. symmetric linear profile | |