MCQOPTIONS
Saved Bookmarks
This section includes 289 Mcqs, each offering curated multiple-choice questions to sharpen your Network Theory knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
If the L.T. of the voltage across a capacitor of value 1/2 F is V1 (s) = s + 1then value of the current through the capacitor at t = 0+ is s3 + s2 + s + 1 |
| A. | 3 A |
| B. | 2 A |
| C. | 0 A |
| D. | 1 A |
| Answer» D. 1 A | |
| 152. |
Find the rms value of the wave shown below . |
| A. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> V<sub>m</sub></center> </td><td rowspan="2"> </td></tr><td align="center">3</td></table> |
| B. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 2V<sub>m</sub></center> </td><td rowspan="2"> </td></tr><td align="center">3</td></table> |
| C. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> V<sub>m</sub></center> </td><td rowspan="2"> </td></tr><td align="center">2</td></table> |
| D. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> V<sub>m</sub></center> </td><td rowspan="2"> </td></tr><td align="center">2</td></table> |
| Answer» B. <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 2V<sub>m</sub></center> </td><td rowspan="2"> </td></tr><td align="center">3</td></table> | |
| 153. |
The number of branches and nodes in the graph are |
| A. | 5, 10 |
| B. | 10, 5 |
| C. | 10, 10 |
| D. | 6, 10 |
| Answer» C. 10, 10 | |
| 154. |
In the figure the transformer is ideal with adjustable turns ratio N |
| A. | 1: 1 |
| B. | 100: 1 |
| C. | 1: 100 |
| D. | 1000: 1 |
| Answer» D. 1000: 1 | |
| 155. |
A single phase transformer is connected as shown in fig. when a voltage of 100 V (rms) was applied across AB, the voltmeter connected across AC measured 100 V (rms). The turns ratio N |
| A. | 1: 1 |
| B. | 1: 2 |
| C. | 2: 1 |
| D. | 4: 1 |
| Answer» C. 2: 1 | |
| 156. |
The Thevenin equivalent of the given at terminal a b will be |
| A. | <img src="http://images.interviewmania.com/wp-content/uploads/2019/05/108o1.png"> |
| B. | <img src="http://images.interviewmania.com/wp-content/uploads/2019/05/108o2.png%20"> |
| C. | <img src="http://images.interviewmania.com/wp-content/uploads/2019/05/108o3.png%20"> |
| D. | None of these |
| Answer» E. | |
| 157. |
The current I in the circuit will given by |
| A. | 5 amp |
| B. | 1.2 amp |
| C. | 2.4 amp |
| D. | 0.6 amp |
| Answer» C. 2.4 amp | |
| 158. |
The complex power in the circuit shown below will be |
| A. | 16.5 6.3 |
| B. | 16.5 6.3 |
| C. | 33 6.3 |
| D. | 33 + 6.3 |
| Answer» B. 16.5 6.3 | |
| 159. |
For a given voltage four heating coils will produce max. heat when connected in |
| A. | All in parallel |
| B. | All in series |
| C. | With two parallel pairs in series |
| D. | One pair in parallel with other two in series |
| E. | A and C both |
| Answer» F. | |
| 160. |
The Thevenin equivalent voltage V |
| A. | J 16 (3 J 4) |
| B. | J 16 (J 3 + 4) |
| C. | J 6 (3 + J 4) |
| D. | J 6 (3 J 4) |
| Answer» C. J 6 (3 + J 4) | |
| 161. |
Given T.F. H (s) = s + 2 / s |
| A. | 45 |
| B. | 0 |
| C. | 45 |
| D. | 90 |
| Answer» D. 90 | |
| 162. |
For the figure given below which of these sets of E, R and C value will ensure that the state equation dV |
| A. | 2 V, 1 , 1.25 F |
| B. | 1.6 V, 0.8 , 1 F |
| C. | 1.6 V, 1 , 0.8 F |
| D. | 2 V, 1.25 , 1 F |
| Answer» F. | |
| 163. |
Find the value of R so that V |
| A. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 6</center> </td><td rowspan="2"> </td></tr><td align="center">5</td></table> |
| B. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 5</center> </td><td rowspan="2"> </td></tr><td align="center">6</td></table> |
| C. | |
| D. | 2 |
| E. | 5 |
| Answer» C. | |
| 164. |
For fig. at time t |
| A. | 2.5 amp, 5 amp/sec |
| B. | 2.5 amp, 2.5 amp/sec |
| C. | 5 amp, 2.5 amp/sec |
| D. | 5 amp, 5 amp/sec |
| Answer» B. 2.5 amp, 2.5 amp/sec | |
| 165. |
Find the Thevenin voltage and resistance for the network shown below across the terminal A.B |
| A. | 27 V, 3 |
| B. | 18 V, 3 |
| C. | 27 V, 1 |
| D. | 18 V, 8 |
| Answer» B. 18 V, 3 | |
| 166. |
Determine the maximum energy stored in the capacitor C for the figure given below |
| A. | 1 joule |
| B. | 10 joule |
| C. | 0.1 joule |
| D. | .001 joule |
| Answer» B. 10 joule | |
| 167. |
What will be output voltage across the capacitor for the given input shown below? |
| A. | 8 V |
| B. | 12 V |
| C. | 10 V |
| D. | None of these |
| Answer» B. 12 V | |
| 168. |
The initial voltage on the capacitor is V |
| A. | <table><tr><td rowspan="2">V (t) =</td><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 1</center></td><td rowspan="2">cos (t 45 ) +<br></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>3</center></td><td rowspan="2">e<sup> t</sup> <br></td></tr><td align="center">2</td><td align="center">2</td></table> |
| B. | <table><tr> <td rowspan="2">V (t) = 2 cos (t 45 ) + </td> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 3</center></td><td rowspan="2">e<sup>+ t</sup> </td></tr><td align="center">2</td></table> |
| C. | <table><tr> <td rowspan="2">V (t) = cos (t 45 ) + </td> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 1</center></td><td rowspan="2">e<sup> 2t</sup> </td></tr><td align="center">2</td></table> |
| D. | <table><tr> <td rowspan="2">V (t) = cos (t + 45 ) +</td> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 3</center></td><td rowspan="2">e<sup> 2t </sup> </td></tr><td align="center">2</td></table> |
| Answer» B. <table><tr> <td rowspan="2">V (t) = 2 cos (t 45 ) + </td> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 3</center></td><td rowspan="2">e<sup>+ t</sup> </td></tr><td align="center">2</td></table> | |
| 169. |
Current i at time t = 4 sec will be |
| A. | 5 amp |
| B. | 3 amp |
| C. | 3 amp |
| D. | 5 amp |
| Answer» C. 3 amp | |
| 170. |
Current i at t = 0.5 sec will be |
| A. | 5 amp |
| B. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 5</center></td><td rowspan="2">amp </td></tr><td align="center">3</td></table> |
| C. | 3 amp |
| D. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 3</center></td><td rowspan="2">amp </td></tr><td align="center">5</td></table> |
| Answer» B. <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 5</center></td><td rowspan="2">amp </td></tr><td align="center">3</td></table> | |
| 171. |
Current i at t = 0.5 sec will be |
| A. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 50</center></td><td rowspan="2">amp </td></tr><td align="center">15</td></table> |
| B. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 50</center></td><td rowspan="2">amp </td></tr><td align="center">20</td></table> |
| C. | 5 amp |
| D. | 3 amp |
| Answer» D. 3 amp | |
| 172. |
Find the current i at time t = 2 sec |
| A. | 2 amp. |
| B. | 2 amp |
| C. | 1 amp |
| D. | None of these |
| Answer» B. 2 amp | |
| 173. |
The r.m.s. value for the given wave is given by |
| A. | 10/18 |
| B. | 2 |
| C. | 12/18 |
| D. | None of these |
| Answer» B. 2 | |
| 174. |
Calculate the rms value of the given wave |
| A. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 15</center> </td><td rowspan="2">A </td></tr><td align="center">10</td></table> |
| B. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 5</center> </td><td rowspan="2">A </td></tr><td align="center">12</td></table> |
| C. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 15</center> </td><td rowspan="2">A </td></tr><td align="center">9</td></table> |
| D. | |
| E. | <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 12</center> </td><td rowspan="2">A </td></tr><td align="center">15</td></table> |
| Answer» C. <table><tr> <td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 15</center> </td><td rowspan="2">A </td></tr><td align="center">9</td></table> | |
| 175. |
The maximum energy in the given circuit will be |
| A. | 14.4 joule |
| B. | 126 joule |
| C. | 216 joule |
| D. | None of these |
| Answer» D. None of these | |
| 176. |
The percentage of power loss in the question 115 |
| A. | 5% |
| B. | 2.5% |
| C. | 10% |
| D. | 20% |
| Answer» C. 10% | |
| 177. |
The total impedance of the circuit shown is |
| A. | 20 |
| B. | (20 + J 10) |
| C. | (20 J 10) |
| D. | (20 + J 5) |
| Answer» B. (20 + J 10) | |
| 178. |
The impulse response of an R-L circuit is a |
| A. | rising exponential function |
| B. | decaying exponential function |
| C. | step function |
| D. | parabolic function |
| Answer» C. step function | |
| 179. |
The Laplace transform of (t |
| A. | <table><tr><td rowspan="2"> <br>=</td><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 2</center></td><td rowspan="2"> e<sup> s<sup> <br></sup></sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2</center></td><td rowspan="2">e<sup> s</sup> <br></td></tr><td align="center">s<sup>3</sup></td><td align="center">s<sup>2</sup> </td><br></table> |
| B. | <table><tr><td rowspan="2"> <br>=</td><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 2</center></td><td rowspan="2"> e<sup> s<sup> +<br></sup></sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2</center></td><td rowspan="2">e<sup> s</sup> <br></td></tr><td align="center">s<sup>3</sup></td><td align="center">s<sup>2</sup> </td><br></table> |
| C. | <table><tr><td rowspan="2"> <br>=</td><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 2</center></td><td rowspan="2"> e<sup> 2s<sup> -<br></sup></sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">e<sup> s</sup> <br></td></tr><td align="center">s<sup>3</sup></td><td align="center">s </td><br></table> |
| D. | None of these |
| Answer» E. | |
| 180. |
For the circuit shown below in the figure, the voltage V |
| A. | 2 V |
| B. | 1 V |
| C. | 1 V |
| D. | None of these |
| Answer» E. | |
| 181. |
The voltage V in the given figure is |
| A. | 2 V |
| B. | <table><tr> <td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4 </center></td><td rowspan="2">V</td></tr><td align="center">3</td></table> |
| C. | 4 V |
| D. | 8 V |
| Answer» D. 8 V | |
| 182. |
The voltage across the 1 k resistor between A and B of the network shown in the given figure is 10 V 2k 2k 2A 1k A B (A) (B) 14 3 V (C) (D) 26 3 V |
| A. | 12 V |
| B. | <table><tr> <td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>14 </center></td><td rowspan="2">V</td></tr><td align="center">3</td></table> |
| C. | 10 V |
| D. | <table><tr> <td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>26 </center></td><td rowspan="2">V</td></tr><td align="center">3</td></table> |
| Answer» C. 10 V | |
| 183. |
The V-I relation for network is V = 5 2I, when R = 3 is connected as shown the value of I is given by |
| A. | 5 |
| B. | <table><tr> <td rowspan="2"> =</td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5 </center></td><td rowspan="2"> amp.</td></tr><td align="center">3</td></table> |
| C. | - 1 |
| D. | 1 |
| Answer» E. | |
| 184. |
In the circuit of the given figure, the magnitude of V |
| A. | 2.14 mH |
| B. | 5.30 H |
| C. | 31.8 mH |
| D. | 1.32 H |
| Answer» D. 1.32 H | |
| 185. |
Initial voltage on capacitor V |
| A. | 1 V |
| B. | 1 V |
| C. | <table><tr> <td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>13 </center></td><td rowspan="2">V</td></tr><td align="center">3</td></table> |
| D. | <table><tr> <td rowspan="2">-</td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>13 </center></td><td rowspan="2">V</td></tr><td align="center">3</td></table> |
| Answer» D. <table><tr> <td rowspan="2">-</td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>13 </center></td><td rowspan="2">V</td></tr><td align="center">3</td></table> | |
| 186. |
The natural frequency of the circuit is given by |
| A. | - 6 |
| B. | - 8 |
| C. | <table><tr> <td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>15 </center></td><td rowspan="2"></td></tr><td align="center">2</td></table> |
| D. | - 10 |
| Answer» B. - 8 | |
| 187. |
For the given graph, match List I with List II |
| A. | 3 1 2 4 |
| B. | 2 3 1 4 |
| C. | 3 2 1 4 |
| D. | 1 2 3 4 |
| Answer» B. 2 3 1 4 | |
| 188. |
A network contains linear resistors and ideal voltage sources. If values of all the resistors are doubled, then the voltage across the resistor is |
| A. | halved |
| B. | doubled |
| C. | increased by four times |
| D. | not changed |
| Answer» E. | |
| 189. |
A connected graph has `b' number of branches and `n' number of nodes. Its ranks is |
| A. | b |
| B. | n |
| C. | b 1 |
| D. | n 1 |
| Answer» E. | |
| 190. |
The voltage marked V |
| A. | <table><tr> <td rowspan="2"> </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>60 </center></td><td rowspan="2"> V </td></tr><td align="center">7</td></table> |
| B. | <table><tr> <td rowspan="2"> </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>120</center></td><td rowspan="2"> V </td></tr><td align="center">7</td></table> |
| C. | <table><tr> <td rowspan="2"> </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>40</center></td><td rowspan="2"> V </td></tr><td align="center">7</td></table> |
| D. | None of these. |
| Answer» C. <table><tr> <td rowspan="2"> </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>40</center></td><td rowspan="2"> V </td></tr><td align="center">7</td></table> | |
| 191. |
In the circuit V |
| A. | 2 |
| B. | 4 |
| C. | 5 |
| D. | 6 |
| Answer» C. 5 | |
| 192. |
The current I as marked in the figure is |
| A. | 3 A |
| B. | 2 A |
| C. | 1 A |
| D. | 0 A |
| Answer» D. 0 A | |
| 193. |
The Norton equivalent across BB is given by |
| A. | <table><tr><td rowspan="2"> R<sub>N</sub> =</td><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 50</center></td><td rowspan="2"> , I<sub>sc</sub> = <br></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2</center></td><td rowspan="2"> amp</td></tr><td align="center">26</td><td align="center">5</td><br></table> |
| B. | <table><tr><td rowspan="2"> R<sub>N</sub> =</td><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 50</center></td><td rowspan="2"> , I<sub>sc</sub> = <br></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2"> amp</td></tr><td align="center">13</td><td align="center">5</td><br></table> |
| C. | <table><tr><td rowspan="2"> R<sub>N</sub> =</td><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 50</center></td><td rowspan="2"> , I<sub>sc</sub> = <br></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2</center></td><td rowspan="2"> amp</td></tr><td align="center">13</td><td align="center">5</td><br></table> |
| D. | None of the above |
| Answer» C. <table><tr><td rowspan="2"> R<sub>N</sub> =</td><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> 50</center></td><td rowspan="2"> , I<sub>sc</sub> = <br></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2</center></td><td rowspan="2"> amp</td></tr><td align="center">13</td><td align="center">5</td><br></table> | |
| 194. |
The Thevenin equivalent across AA is given by |
| A. | <table><tr> <td rowspan="2"> V<sub>th</sub> = 5 V, R<sub>th</sub> = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>15 </center></td><td rowspan="2"> </td></tr><td align="center">2</td></table> |
| B. | <table><tr> <td rowspan="2"> V<sub>th</sub> = 15 V, R<sub>th</sub> = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>15 </center></td><td rowspan="2"> </td></tr><td align="center">4</td></table> |
| C. | <table><tr> <td rowspan="2"> V<sub>th</sub> = 25 V, R<sub>th</sub> = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>15 </center></td><td rowspan="2"> </td></tr><td align="center">4</td></table> |
| D. | None of these |
| Answer» D. None of these | |
| 195. |
Two Incandescent light bulbs of 40 W and 60 W rating are connected in series across the supply voltage, V then |
| A. | the bulbs together consume 100 W |
| B. | the bulbs together consume 50 W |
| C. | the 60 W bulb glows brighter. |
| D. | the 40 W bulb glows brighter. |
| Answer» D. the 40 W bulb glows brighter. | |
| 196. |
The resonant frequency of the given series is |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">Hz</td></tr><td align="center">2 3 </td></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">Hz</td></tr><td align="center">4 3 </td></table> |
| C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">Hz</td></tr><td align="center">4 2 </td></table> |
| D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">Hz</td></tr><td align="center">2 2 </td></table> |
| Answer» E. | |
| 197. |
In the network shown in the figure, the effective resistance forced by the voltage source is |
| A. | 4 |
| B. | 3 |
| C. | 2 |
| D. | 1 |
| Answer» C. 2 | |
| 198. |
When a unit impulse voltage is applied to an inductor of 4 H, the energy supplied by the source is |
| A. | |
| B. | 5 J |
| C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">J</td></tr><td align="center">8 </td></table> |
| D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">J</td></tr><td align="center">2 </td></table> |
| Answer» D. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">J</td></tr><td align="center">2 </td></table> | |
| 199. |
In the figure below, the current of 1 ampere flows through the resistance of |
| A. | 4 |
| B. | 20 |
| C. | 30 |
| D. | 12 |
| Answer» E. | |
| 200. |
Impedance Z as shown in figure |
| A. | J 29 |
| B. | J 9 |
| C. | J 19 |
| D. | J 39 |
| Answer» C. J 19 | |