MCQOPTIONS
Saved Bookmarks
This section includes 289 Mcqs, each offering curated multiple-choice questions to sharpen your Network Theory knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
The effective inductance of the circuit across the terminal AB in the figure shown below, is |
| A. | 9 H |
| B. | 21 H |
| C. | 11 H |
| D. | 6 H |
| Answer» D. 6 H | |
| 202. |
The energy stored in the magnetic field at a solenoid 30 cm long and 3 cm diameter wound with 1000 turns of wire carrying a current of 10A, is |
| A. | 0.015 joule |
| B. | 0.15 joule |
| C. | 0.5 joule |
| D. | 1.15 joule |
| Answer» C. 0.5 joule | |
| 203. |
The time constant of the network shown in the fig. is |
| A. | 4RC |
| B. | 3RC |
| C. | 2RC |
| D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2RC </center></td> </tr><tr><td style="text-align: center;">3</td></tr></table> |
| Answer» B. 3RC | |
| 204. |
All the resistances in the fig. are 1 each. The value of I will be |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1 </center></td> <td rowspan="2"> A </td></tr><tr><td style="text-align: center;">15</td></tr></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2 </center></td> <td rowspan="2"> A </td></tr><tr><td style="text-align: center;">15</td></tr></table> |
| C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>4 </center></td> <td rowspan="2"> A </td></tr><tr><td style="text-align: center;">15</td></tr></table> |
| D. | A |
| Answer» E. | |
| 205. |
The total power consumed in the circuit shown in figure is |
| A. | 6 W` |
| B. | 8 W |
| C. | 9 W |
| D. | 12 W |
| Answer» C. 9 W | |
| 206. |
The superposition theorem is valid for |
| A. | All linear networks |
| B. | Linear and symmetrical network |
| C. | Only linear networks having no dependent sources. |
| D. | Linear as well as non-linear networks. |
| Answer» B. Linear and symmetrical network | |
| 207. |
Reciprocity theorem is valid for |
| A. | All linear networks |
| B. | All active elements. |
| C. | All linear and passive networks |
| D. | All linear, passive and bilateral networks. |
| Answer» E. | |
| 208. |
An ideal voltage source and ideal current source are connected in parallel this circuit has |
| A. | a Norton equivalent but not Thevenin equivalent. |
| B. | a Thevenin equivalent but not Norton equivalent. |
| C. | Both the Thevenin and Norton equivalent. |
| D. | Neither Thevenin nor Norton equivalent. |
| Answer» C. Both the Thevenin and Norton equivalent. | |
| 209. |
For the circuit shown in figure, the voltage V |
| A. | 12 V |
| B. | 8 V |
| C. | 4 V |
| D. | 13 V |
| Answer» E. | |
| 210. |
The network shown, if i |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"> </td></tr><td align="center">2 </td></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"> </td></tr><td align="center">3</td></table> |
| C. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">2 </td></tr><td align="center">3 </td></table> |
| D. | 2 |
| Answer» C. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;">2 </td></tr><td align="center">3 </td></table> | |
| 211. |
Which of the following networks in the equivalent of the circuit shown in figure? |
| A. | 1 |
| B. | 2 |
| C. | 3 |
| D. | 4 |
| Answer» B. 2 | |
| 212. |
The current having the waveform shown in figure is flowing in a resistance of 10 . The average power is |
| A. | 1000 watt |
| B. | 1000/2 watt |
| C. | 1000/3 watt |
| D. | 1000/4 watt |
| Answer» D. 1000/4 watt | |
| 213. |
The equivalent resistance as seen between the terminals (a, b) is |
| A. | 2 |
| B. | 4 |
| C. | 1 |
| D. | Not possible |
| Answer» B. 4 | |
| 214. |
Twelve 1H inductors are used as edge to form a cube. The inductance between two diagonally opposite corners of cube is |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5</center></td><td rowspan="2">H</td></tr><td align="center">6 </td></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10</center></td><td rowspan="2">H</td></tr><td align="center">6 </td></table> |
| C. | 2 H |
| D. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>3</center></td><td rowspan="2">H</td></tr><td align="center">2 </td></table> |
| Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10</center></td><td rowspan="2">H</td></tr><td align="center">6 </td></table> | |
| 215. |
Twelve 1 resistors are used as edge to form a cube. The resistance between two diagonally opposite corners of the cube is |
| A. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>5</center></td><td rowspan="2"> </td></tr><td align="center">6 </td></table> |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"> </td></tr><td align="center">5 </td></table> |
| C. | 1 |
| D. | None of these |
| Answer» B. <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"> </td></tr><td align="center">5 </td></table> | |
| 216. |
The equivalent capacitance for the network shown in the fig. is |
| A. | C / 4 |
| B. | 5C / 13 |
| C. | 5C / 2 |
| D. | 3C |
| Answer» C. 5C / 2 | |
| 217. |
The network element and V L characteristics are shown in fig. (a) and (b). The element is |
| A. | Non-linear, active and bilateral |
| B. | Linear, passive and bilateral. |
| C. | Non-linear, passive and non-bilateral |
| D. | Non-linear, active and non-bilateral. |
| Answer» E. | |
| 218. |
For the value of obtained in (a), the time taken for 95% of the stored energy to be dissipated is close to |
| A. | 0 10 sec |
| B. | 0 15 sec |
| C. | 0 50 sec |
| D. | 1 0 sec |
| Answer» C. 0 50 sec | |
| 219. |
If, at t = 0 |
| A. | 0 |
| B. | 20 |
| C. | 40 |
| D. | 60 |
| Answer» B. 20 | |
| 220. |
A series R-L-C circuit is switched on to a step voltage V at t = 0. What are the initial and final values of the current in the circuit, respectively? |
| A. | V/R, V/R |
| B. | Zero, Infinity |
| C. | Zero, Zero |
| D. | Zero, V/R |
| Answer» D. Zero, V/R | |
| 221. |
In figure, the capacitor initially has a charge of 10 coulomb. The current in the circuit one second after the switch S is closed will be |
| A. | 14 7 A |
| B. | 18 5 A |
| C. | 40 0 A |
| D. | 50 0 A |
| Answer» C. 40 0 A | |
| 222. |
The circuit shown in the figure is in steady state, when the switch is closed at t = 0. Assuming that the inductance is ideal, the current through the inductor at t = 0 |
| A. | 0A |
| B. | 0 5 A |
| C. | 1A |
| D. | 2A |
| Answer» D. 2A | |
| 223. |
In the figure given, for the initial capacitor voltage is zero. The switch is closed at t = 0. The final steady-state voltage across the capacitor is |
| A. | 10V |
| B. | 5V |
| C. | 20V |
| D. | 0V |
| Answer» B. 5V | |
| 224. |
In the circuit shown in figure, the switch S is closed at time t = 0. The voltage across the inductance at t = 0 |
| A. | 2V |
| B. | 4V |
| C. | 6 V |
| D. | 8V |
| Answer» C. 6 V | |
| 225. |
The initial current in the circuit shown below when the switch is opened for t > 0 |
| A. | 1 5 A |
| B. | 0A |
| C. | 2A |
| D. | 10A |
| Answer» C. 2A | |
| 226. |
The initial current in the circuit shown below when the switch is opened for t > 0 is |
| A. | 1 67 A |
| B. | 3A |
| C. | 0A |
| D. | 2A |
| Answer» B. 3A | |
| 227. |
The circuit shown below is under steady-state condition with the switch closed. The switch is opened at t = 0. What is the time constant of the circuit |
| A. | 0 1s |
| B. | 0 2s |
| C. | 0 4s |
| D. | 10s |
| Answer» C. 0 4s | |
| 228. |
For the network shown below, the switch S is closed at t = 0 with the capacitor uncharged. The value of di(t) / dt at t = 0 |
| A. | 100 A/sec |
| B. | 100 A/sec |
| C. | 1000 A/sec |
| D. | 1000 A/sec |
| Answer» C. 1000 A/sec | |
| 229. |
The time constant of the network shown below is given by |
| A. | (1) |
| B. | (2) |
| C. | (3) |
| D. | (4) |
| Answer» B. (2) | |
| 230. |
The steady state current through the 1H inductor in the circuit shown in the given figure is |
| A. | Zero |
| B. | 3A |
| C. | 5A |
| D. | 6A |
| Answer» C. 5A | |
| 231. |
For the circuit shown below, the switch is closed at t = 0. The current through the capacitor decreases exponentially with a time constant |
| A. | 0 5s |
| B. | 1s |
| C. | 2s |
| D. | 10s |
| Answer» B. 1s | |
| 232. |
For the circuit shown below, C |
| A. | Fixed voltage of 20V |
| B. | Fixed voltage of 10V |
| C. | Fixed voltage of 10V |
| D. | Sinusoidal voltage |
| Answer» E. | |
| 233. |
A resistor R of 1 and two inductors L |
| A. | Zero |
| B. | 1A |
| C. | 2A |
| D. | 3A |
| Answer» B. 1A | |
| 234. |
In the circuit shown below, S was initially open. At time t = 0, S is closed. When the current through the induc-tor is 6A, the rate of change of current through the resistor is 6 A/s. The value of inductor would be |
| A. | 1H |
| B. | 2H |
| C. | 3H |
| D. | 4H |
| Answer» C. 3H | |
| 235. |
In the circuit shown below, steady state was reached when the switch s was open. The switch was closed at t = 0. The initial value of the current through the capacitor 2C is: |
| A. | 0 A |
| B. | 1 A |
| C. | 2 A |
| D. | 3 A |
| Answer» D. 3 A | |
| 236. |
Which of the following theorems can be applied to any network-linear or non-linear, active or passive, time variant or time-invariant? |
| A. | Thevenin theorem |
| B. | Norton theorem |
| C. | Tellegen theorem |
| D. | Superposition theorem |
| Answer» D. Superposition theorem | |
| 237. |
A parallel circuit has two branches. In one branch, R and L are in series and in the other branch, R and C are in series. The circuit will exhibit unity power factor when |
| A. | <table><tr><td rowspan="2">R =</td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>L</center></td><td rowspan="2"></td></tr><td align="center">C</td></table> |
| B. | |
| C. | R = LC |
| D. | <table><tr><td rowspan="2">R =</td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>C</center></td><td rowspan="2"></td></tr><td align="center">L</td></table> |
| E. | <table><tr><td rowspan="2">R =</td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>L</center></td><td rowspan="2"></td></tr><td align="center">C</td></table> |
| Answer» B. | |
| 238. |
R and C are connected in parallel across a sinusoidal voltage source of 240 V. If the currents through the source and the capacitor are 5A and 4A, respectively; what is the value of R? |
| A. | 24 |
| B. | 48 |
| C. | 80 |
| D. | 240 |
| Answer» D. 240 | |
| 239. |
An RLC series circuit has a resistance R of 20 and a current which lags behind the applied voltage by 45 . If the voltage across the inductor is twice the voltage across the capacitor, what is the value of inductive reactance? |
| A. | 10 |
| B. | 20 |
| C. | 40 |
| D. | 60 |
| Answer» D. 60 | |
| 240. |
For a network of 11 branches and 6 nodes, what is the number of independent loops? |
| A. | 4 |
| B. | 5 |
| C. | 6 |
| D. | 11 |
| Answer» D. 11 | |
| 241. |
Consider the following properties of a particular network theorem: |
| A. | Thevenin s theorem |
| B. | Norton s theorem |
| C. | Tellegen s theorem |
| D. | Superposition theorem |
| Answer» D. Superposition theorem | |
| 242. |
If two identical 3 A, 4 Norton equivalent circuits are connected in parallel with like polarity, the combined Norton equivalent circuit will be |
| A. | 3 A, 8 |
| B. | 6 A, 8 |
| C. | 0 A, 2 |
| D. | 6 A, 2 |
| Answer» E. | |
| 243. |
Consider the following statements: Superposition theorem is applicable to a linear network in determining |
| A. | 1 and 2 |
| B. | 1, 2 and 3 |
| C. | 1 and 3 |
| D. | 2 and 3 |
| Answer» B. 1, 2 and 3 | |
| 244. |
Two two-part networks are connected in parallel. The combination is to be represented as a single two-port network. The parameters of this network are obtained by addition of the individual |
| A. | z-parameters |
| B. | parameters |
| C. | y-parameters |
| D. | ABCD parameters |
| Answer» D. ABCD parameters | |
| 245. |
Which one of the following statements is correct? In a four-branch parallel circuit, 50 mA current flows in each branch. If one of the branches opens, the currents in the other branches |
| A. | Increase |
| B. | Decrease |
| C. | Are unaffected |
| D. | Double |
| Answer» D. Double | |
| 246. |
What is the locus of the tip of the voltage phasor across R in a series R-L-C circuit? |
| A. | A parabola |
| B. | An ellipse |
| C. | A circle |
| D. | A rectangular hyperbola |
| Answer» D. A rectangular hyperbola | |
| 247. |
Norton theorems results in |
| A. | A voltage source with an impedance in series |
| B. | A current source with an impedance in parallel |
| C. | A current source with an impedance in series |
| D. | A voltage source with an impedance in parallel |
| Answer» C. A current source with an impedance in series | |
| 248. |
In the circuit shown below, the switch is closed at t = 0. The current through the capacitor will decrease exponentially with a time constant |
| A. | 0.5 s |
| B. | 1 s |
| C. | 2 s |
| D. | 10 s |
| Answer» C. 2 s | |
| 249. |
In the given circuit, if |I |
| A. | <table><tr><td rowspan="2">I<sub>1</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>8</center></td><td rowspan="2">, I<sub>2</sub> will lag by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>8</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">6</td><td style="text-align: center;">6</td></tr></table> |
| B. | <table><tr><td rowspan="2">I<sub>1</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2">, I<sub>2</sub> will lag by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">8</td><td style="text-align: center;">8</td></tr></table> |
| C. | <table><tr><td rowspan="2">I<sub>1</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>8</center></td><td rowspan="2">, I<sub>2</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>8</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">6</td><td style="text-align: center;">6</td></tr></table> |
| D. | <table><tr><td rowspan="2">I<sub>1</sub> will lag by tan<sup> 1</sup> </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2">, I<sub>2</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">8</td><td style="text-align: center;">8</td></tr></table> |
| Answer» D. <table><tr><td rowspan="2">I<sub>1</sub> will lag by tan<sup> 1</sup> </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2">, I<sub>2</sub> will lead by tan<sup> 1</sup></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>6</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">8</td><td style="text-align: center;">8</td></tr></table> | |
| 250. |
The number of edges in a compete graph of n vertices is |
| A. | n (n 1) |
| B. | <table><tr><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>n (n 1)</center></td></tr><td align="center">2</td></table> |
| C. | n |
| D. | n 1 |
| Answer» C. n | |