Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

8601.

If \[\frac{{{(1-3x)}^{1/2}}+{{(1-x)}^{5/3}}}{\sqrt{4-x}}\]is approximately equal to \[a+bx\]for small values of x, then \[(a,b)\]=

A. \[\left( 1,\frac{35}{24} \right)\]
B. \[\left( 1,-\frac{35}{24} \right)\]
C. \[\left( 2,\frac{35}{12} \right)\]
D. \[\left( 2,-\frac{35}{12} \right)\]
Answer» C. \[\left( 2,\frac{35}{12} \right)\]
8602.

In the expansion of \[{{\left( 2{{x}^{2}}-\frac{1}{x} \right)}^{12}}\], the term independent of x is [MP PET 2001]

A. 10th
B. 9th
C. 8th
D. 7th
Answer» C. 8th
8603.

The ratio of the coefficient of terms \[{{x}^{n-r}}{{a}^{r}}\]and \[{{x}^{r}}{{a}^{n-r}}\] in the binomial expansion of \[{{(x+a)}^{n}}\]will be

A. \[x:a\]
B. \[n:r\]
C. \[x:n\]
D. None of these
Answer» E.
8604.

The angle between the curves \[y=\sin x\] and \[y=\cos x\] is [EAMCET 2003]

A. \[{{\tan }^{-1}}(2\sqrt{2})\]
B. \[{{\tan }^{-1}}(3\sqrt{2})\]
C. \[{{\tan }^{-1}}(3\sqrt{3})\]
D. \[{{\tan }^{-1}}(5\sqrt{2})\]
Answer» B. \[{{\tan }^{-1}}(3\sqrt{2})\]
8605.

The angle of intersection of the curves \[y={{x}^{2}}\] and \[x={{y}^{2}}\] at (1, 1) is [Roorkee 2000; Karnataka CET 2001]

A. \[{{\tan }^{-1}}\left( \frac{4}{3} \right)\]
B. \[{{\tan }^{-1}}(1)\]
C. \[{{90}^{o}}\]
D. \[{{\tan }^{-1}}\left( \frac{3}{4} \right)\]
Answer» E.
8606.

Let \[f:[a,b]\to R\] be a function such that for \[c\in (a,b),f'(c)=f'(c)=f'''(c)={{f}^{iv}}(c)={{f}^{v}}(c)=0\]. Then

A. f has a local extremum at x = c
B. f has neither local maximum nor minimum at x = c
C. f is necessarily a constant function
D. it is difficult to say whether or (b)
Answer» E.
8607.

What is the product of two parts of 20, such that the product of one part and the cube of the other is maximum?

A. 75
B. 91
C. 84
D. 96
Answer» B. 91
8608.

If \[A>0,\text{ }B>0\] and \[A+B=\pi /3,\] then the maximum value of tan A tan B is

A. \[\frac{1}{\sqrt{3}}\]
B. \[\frac{1}{3}\]
C. \[3\]
D. \[\sqrt{3}\]
Answer» C. \[3\]
8609.

The profit function, in rupees, of a firm selling x items \[(x\ge 0)\] per week is given by\[P(x)=-3500+(400-x)x\]. How many items should the firm sell so that the firm has maximum profit?

A. 400
B. 300
C. 200
D. 100
Answer» D. 100
8610.

If\[f(x)=x\ell nx\], then \[f(x)\] attains minimum value at which one of the following points?

A. \[x={{e}^{-2}}\]
B. \[x=e\]
C. \[x={{e}^{-1}}\]
D. \[x=2{{e}^{-1}}\]
Answer» D. \[x=2{{e}^{-1}}\]
8611.

A wire 34 cm long is to be bent in the form of a quadrilateral of which each angle is \[90{}^\circ \]. What is the maximum area which can be enclosed inside the quadrilateral?

A. \[68\,\,c{{m}^{2}}\]
B. \[70\,\,c{{m}^{2}}\]
C. \[71.25\,\,c{{m}^{2}}\]
D. \[72.25\,\,c{{m}^{2}}\]
Answer» E.
8612.

If \[f(x)=k{{x}^{3}}-9{{x}^{2}}+9x+3\] is monotonically increasing in every interval, then which one of the following is correct?

A. \[k<3\]
B. \[k\le 3\]
C. \[k>3\]
D. \[k\ge 3\]
Answer» D. \[k\ge 3\]
8613.

How many tangents are parallel to x-axis for the curve\[y={{x}^{2}}-4x+3\]?

A. 1
B. 2
C. 3
D. No tangent is parallel to x-axis
Answer» B. 2
8614.

The function \[f(x)=\frac{{{x}^{2}}}{{{e}^{x}}}\] monotonically increasing if

A. x < 0 only
B. x > 2 only
C. 0 < x < 2
D. \[x\in (-\infty ,0)\cup (2,\infty )\]
Answer» D. \[x\in (-\infty ,0)\cup (2,\infty )\]
8615.

The cost of running a bus from A to B, is Rs. \[\left( av+\frac{b}{v} \right),\] where v km/h is the average speed of the bus. When the bus travels at 30 km/h, the cost comes out to be Rs. 75 while at 40 km/h, it is Rs. 65. Then the most economical speed (in km/ h) of the bus is:

A. 45
B. 50
C. 60
D. 40
Answer» D. 40
8616.

If the curve \[y=a{{x}^{2}}-6x+b\] passes through (0, 2) and has its tangent parallel to the x-axis at \[x=\frac{3}{2},\] then

A. a = b = 0
B. a = b = 1
C. a = b = 2
D. a = b = -1
Answer» D. a = b = -1
8617.

If the sub-normal at any point on \[y={{a}^{1-n}}{{x}^{n}}\] is of constant length, then the value of n is

A. \[\frac{1}{4}\]
B. 1
C. \[\frac{1}{3}\]
D. \[\frac{1}{2}\]
Answer» E.
8618.

The equation of the normal to the curve \[y=\left| {{x}^{2}}-\left| x \right| \right|\] at\[x=-2\].

A. \[3y=x+8\]
B. \[x=3y+4\]
C. \[y=2x+8\]
D. \[y=3x\]
Answer» B. \[x=3y+4\]
8619.

The approximate value of \[{{(0.007)}^{1/3}}\]

A. \[\frac{23}{120}\]
B. \[\frac{27}{120}\]
C. \[\frac{19}{120}\]
D. \[\frac{17}{120}\]
Answer» B. \[\frac{27}{120}\]
8620.

The equation of one of the tangents to the curve \[y=\cos (x+y),-2\pi \le x\le 2\pi \] that is parallel to the line \[x+2y=0,\] is

A. \[x+2y=1\]
B. \[x+2y=\pi /2\]
C. \[x+2y=\pi /4\]
D. None of these
Answer» C. \[x+2y=\pi /4\]
8621.

Let f and g be functions from the interval \[[0,\infty )\] to the interval\[[0,\infty )\], f being an increasing and g being a decreasing function. If \[f\{g(0)\}=0\] then

A. \[f\{g(x)\}\ge f\{g(0)\}\]
B. \[g\{f(x)\}\le g\{f(0)\}\]
C. \[f\{g(2)\}=7\]
D. None of these
Answer» C. \[f\{g(2)\}=7\]
8622.

The largest area of a trapezium inscribed in a semi-circle of radius R, if the lower base is on the diameter, is

A. \[\frac{3\sqrt{3}}{4}{{R}^{2}}\]
B. \[\frac{\sqrt{3}}{2}{{R}^{2}}\]
C. \[\frac{3\sqrt{3}}{8}{{R}^{2}}\]
D. \[{{R}^{2}}\]
Answer» B. \[\frac{\sqrt{3}}{2}{{R}^{2}}\]
8623.

If water is poured into an inverted hollow cone whose semi-vertical angle is \[30{}^\circ \]. Its depth (measured along the axis) increases at the rate of 1 cm/s. The rate at which the volume of water increases when the depth is 24 cm is

A. \[162\,\,c{{m}^{3}}/s\]
B. \[172\,\,c{{m}^{3}}/s\]
C. \[182\,\,c{{m}^{3}}/s\]
D. \[192\,\,c{{m}^{3}}/s\]
Answer» E.
8624.

What is the interval in which the function \[f(x)=\sqrt{9-{{x}^{2}}}\] is increasing? \[(f(x)>0)\]

A. \[0<x<3\]
B. \[-3<x<0\]
C. \[0<x<9\]
D. \[-3<x<3\]
Answer» C. \[0<x<9\]
8625.

Let \[P(x)={{a}_{0}}+{{a}_{1}}{{x}^{2}}+{{a}_{2}}{{x}^{4}}+.....+{{a}_{n}}{{x}^{2n}}\] be a polynomial in a real variable x with\[0<{{a}_{0}}<{{a}_{1}}<{{a}_{2}}<....<{{a}_{n}}\]. The function P(x) has

A. Neither a maximum nor a minimum
B. Only one maximum
C. Only one minimum
D. Only one maximum and only one minimum
Answer» D. Only one maximum and only one minimum
8626.

Consider the following statements: 1. \[f(x)=\] ln x is an increasing function on \[\left( 0,\infty \right).\] 2. \[f(x)={{e}^{x}}-x(ln\,\,x)\] is an increasing function on \[\left( 1,\,\infty \right)\]. Which of the above statements is/are correct?

A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2
Answer» D. Neither 1 nor 2
8627.

The function \[f(x)=2\,\,\log (x-2)-{{x}^{2}}+4x+1\]increases on the interval

A. (1, 2)
B. (2, 3)
C. (1/2, 3)
D. (2, 4)
Answer» C. (1/2, 3)
8628.

The function \[f(x)=1+x(\sin x)[\cos x],0

A. Is continuous on \[\left( 0,\frac{\pi }{2} \right)\]
B. Is strictly increasing in \[\left( 0,\frac{\pi }{2} \right)\]
C. Is strictly decreasing in \[\left( 0,\frac{\pi }{2} \right)\]
D. Has global maximum value 2
Answer» B. Is strictly increasing in \[\left( 0,\frac{\pi }{2} \right)\]
8629.

The number of solutions of the equation \[3\tan x+{{x}^{3}}=2\,\,in\left( 0,\frac{\pi }{4} \right).\] is

A. 1
B. 2
C. 3
D. Infinite
Answer» B. 2
8630.

What is the minimum value of \[px+qy\] \[(p>0,q>0)\] when\[xy={{r}^{2}}\]?

A. \[2r\sqrt{pq}\]
B. \[2pq\sqrt{r}\]
C. \[-2r\sqrt{pq}\]
D. \[2rpq\]
Answer» B. \[2pq\sqrt{r}\]
8631.

The curve \[y=x{{e}^{x}}\] has minimum value equal to

A. \[-\frac{1}{e}\]
B. \[\frac{1}{e}\]
C. \[-e\]
D. e
Answer» B. \[\frac{1}{e}\]
8632.

If from mean value theorem, \[f'({{x}_{1}})=\frac{f(b)-f(a)}{b-a}\], then [MP PET 1999]

A. \[a<{{x}_{1}}\le b\]
B. \[a\le {{x}_{1}}<b\]
C. \[a<{{x}_{1}}<b\]
D. \[a\le {{x}_{1}}\le b\]
Answer» D. \[a\le {{x}_{1}}\le b\]
8633.

If \[f(x)=\cos x,0\le x\le \frac{\pi }{2}\], then the real number ?c? of the mean value theorem is [MP PET 1994]

A. \[\frac{\pi }{6}\]
B. \[\frac{\pi }{4}\]
C. \[{{\sin }^{-1}}\left( \frac{2}{\pi } \right)\]
D. \[{{\cos }^{-1}}\left( \frac{2}{\pi } \right)\]
Answer» D. \[{{\cos }^{-1}}\left( \frac{2}{\pi } \right)\]
8634.

In the Mean-Value theorem \[\frac{f(b)-f(a)}{b-a}=f'(c),\] if \[a=0,b=\frac{1}{2}\] and \[f(x)=x(x-1)(x-2),\]the value of c is [MP PET 2003]

A. \[1-\frac{\sqrt{15}}{6}\]
B. \[1+\sqrt{15}\]
C. \[1-\frac{\sqrt{21}}{6}\]
D. \[1+\sqrt{21}\]
Answer» D. \[1+\sqrt{21}\]
8635.

The function \[f(x)={{x}^{3}}-6{{x}^{2}}+ax+b\] satisfy the conditions of Rolle's theorem in [1, 3]. The values of a and b are

A. 11, ? 6
B. ? 6, 11
C. ?11, 6
D. 6, ?11
Answer» B. ? 6, 11
8636.

If the length of sub-normal is equal to the length of sub-tangent at my point (3, 4) on the curve y=f(x) and the tangent at (3, 4) to y=f(x) meets the coordinate axes at A and B, then the maximum area of the triangle OAB, where O is origin, is

A. 45/2
B. 49/2
C. 44252
D. 81/2
Answer» C. 44252
8637.

A point on the parabola \[{{y}^{2}}=18x\] at which the ordinate increases at twice the rate of the abscissa is

A. (2, 4)
B. (2, -4)
C. \[\left( \frac{-9}{8},\frac{9}{2} \right)\]
D. \[\left( \frac{9}{8},\frac{9}{2} \right)\]
Answer» E.
8638.

If the function \[f(x)=a{{x}^{3}}+b{{x}^{2}}+11x-6\] satisfies condition of Rolle's theorem in [1, 3] for \[x=2+\frac{1}{\sqrt{3}}\], then values of a and b , respectively, are

A. \[-\,3,\text{ }2\]
B. \[2,\,\,-4\]
C. 1, 6
D. none of these
Answer» E.
8639.

The point \[(0,\,5)\]is closest to the curve \[{{x}^{2}}=2y\] at [MNR 1983]

A. \[(2\sqrt{2},0)\]
B. (0, 0)
C. \[(2,\,2)\]
D. None of these
Answer» E.
8640.

If \[f(x)=x+\frac{1}{x},\] x > 0, then its greatest value is [RPET 2002]

A. ? 2
B. 0
C. 3
D. None of these
Answer» E.
8641.

If \[{{a}^{2}}{{x}^{4}}+{{b}^{2}}{{y}^{4}}={{c}^{6}},\] then maximum value of xy is [RPET 2001]

A. \[\frac{{{c}^{2}}}{\sqrt{ab}}\]
B. \[\frac{{{c}^{3}}}{ab}\]
C. \[\frac{{{c}^{3}}}{\sqrt{2ab}}\]
D. \[\frac{{{c}^{3}}}{2ab}\]
Answer» D. \[\frac{{{c}^{3}}}{2ab}\]
8642.

The function \[f(x)=x+\sin x\] has [AMU 2000]

A. A minimum but no maximum
B. A maximum but no minimum
C. Neither maximum nor minimum
D. Both maximum and minimum
Answer» D. Both maximum and minimum
8643.

The denominator of a fraction number is greater than 16 of the square of numerator, then least value of the number is [RPET 2000]

A. \[-1/4\]
B. \[-1/8\]
C. \[1/12\]
D. \[1/16\]
Answer» C. \[1/12\]
8644.

The maximum value of the function \[{{x}^{3}}+{{x}^{2}}+x-4\] is

A. 127
B. 4
C. Does not have a maximum value
D. None of these
Answer» D. None of these
8645.

The maximum and minimum values of \[{{x}^{3}}-18{{x}^{2}}+96x\] in interval (0, 9) are [RPET 1999]

A. 160, 0
B. 60, 0
C. 160, 128
D. 120, 28
Answer» D. 120, 28
8646.

The number of values of x where the function \[f(x)=\cos x+\cos (\sqrt{2}x)\] attains its maximum is [IIT 1998; DCE 2001, 05]

A. 0
B. 1
C. 2
D. Infinite
Answer» C. 2
8647.

One maximum point of \[{{\sin }^{p}}x{{\cos }^{q}}x\]is [RPET 1997; AMU 2000]

A. \[x={{\tan }^{-1}}\sqrt{(p/q)}\]
B. \[x={{\tan }^{-1}}\sqrt{(q/p)}\]
C. \[x={{\tan }^{-1}}(p/q)\]
D. \[x={{\tan }^{-1}}(q/p)\]
Answer» B. \[x={{\tan }^{-1}}\sqrt{(q/p)}\]
8648.

A minimum value of \[\int_{0}^{x}{t{{e}^{-{{t}^{2}}}}}\]dt is [EAMCET 2003]

A. 1
B. 2
C. 3
D. 0
Answer» E.
8649.

If from a wire of length 36 metre a rectangle of greatest area is made, then its two adjacent sides in metre are [MP PET 1998]

A. 6, 12
B. 9, 9
C. 10, 8
D. 13, 5
Answer» C. 10, 8
8650.

\[{{x}^{x}}\] has a stationary point at [Karnataka CET 1993]

A. \[x=e\]
B. \[x=\frac{1}{e}\]
C. \[x=1\]
D. \[x=\sqrt{e}\]
Answer» C. \[x=1\]