Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

8551.

The normal to the circle \[{{x}^{2}}+{{y}^{2}}-3x-6y-10=0\]at the point (?3, 4), is [RPET 1986, 89]

A. \[2x+9y-30=0\]
B. \[9x-2y+35=0\]
C. \[2x-9y+30=0\]
D. \[2x-9y-30=0\]
Answer» B. \[9x-2y+35=0\]
8552.

The number of tangents which can be drawn from the point (?1,2) to the circle \[{{x}^{2}}+{{y}^{2}}+2x-4y+4=0\] is [BIT Ranchi 1991]

A. 1
B. 2
C. 3
D. 0
Answer» E.
8553.

The equation of the tangent at the point \[\left( \frac{a{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}},\frac{{{a}^{2}}b}{{{a}^{2}}+{{b}^{2}}} \right)\] of the circle \[{{x}^{2}}+{{y}^{2}}=\frac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}\]is

A. \[\frac{x}{a}+\frac{y}{b}=1\]
B. \[\frac{x}{a}+\frac{y}{b}+1=0\]
C. \[\frac{x}{a}-\frac{y}{b}=1\]
D. \[\frac{x}{a}-\frac{y}{b}+1=0\]
Answer» B. \[\frac{x}{a}+\frac{y}{b}+1=0\]
8554.

If the equation of one tangent to the circle with centre at (2, ?1) from the origin is \[3x+y=0\], then the equation of the other tangent through the origin is

A. \[3x-y=0\]
B. \[x+3y=0\]
C. \[x-3y=0\]
D. \[x+2y=0\]
Answer» D. \[x+2y=0\]
8555.

If \[{{c}^{2}}>{{a}^{2}}(1+{{m}^{2}}),\]then the line \[y=mx+c\]will intersect the circle \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\]

A. At one point
B. At two distinct points
C. At no point
D. None of these
Answer» D. None of these
8556.

The equations of the tangents drawn from the point (0, 1) to the circle \[{{x}^{2}}+{{y}^{2}}-2x+4y=0\]are [Roorkee 1979]

A. \[2x-y+1=0,\,\,x+2y-2=0\]
B. \[2x-y+1=0,\,\,x+2y+2=0\]
C. \[2x-y-1=0,\,\,x+2y-2=0\]
D. \[2x-y-1=0,\,\,x+2y+2=0\]
Answer» B. \[2x-y+1=0,\,\,x+2y+2=0\]
8557.

If \[\frac{x}{\alpha }+\frac{y}{\beta }=1\] touches the circle \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\], then point \[(1/\alpha ,\,1/\beta )\]lies on a/an [Orissa JEE 2005]

A. Straight line
B. Circle
C. Parabola
D. Ellipse
Answer» C. Parabola
8558.

The length of the tangent from the point (4, 5)to the circle \[{{x}^{2}}+{{y}^{2}}+2x-6y=6\]is [DCE 1999]

A. \[\sqrt{13}\]
B. \[\sqrt{38}\]
C. \[2\sqrt{2}\]
D. \[2\sqrt{13}\]
Answer» B. \[\sqrt{38}\]
8559.

If the length of tangent drawn from the point (5, 3) to the circle \[{{x}^{2}}+{{y}^{2}}+2x+ky+17=0\]be 7, then k =

A. 4
B. -4
C. -6
D. 13/2
Answer» C. -6
8560.

A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the centre of the circle is [AIEEE 2005]

A. A hyperbola
B. A parabola
C. An ellipse
D. A circle
Answer» C. An ellipse
8561.

If the centre of a circle which passing through the points of intersection of the circles \[{{x}^{2}}+{{y}^{2}}-6x+2y+4=0\]and \[{{x}^{2}}+{{y}^{2}}+2x-4y-6=0\]is on the line \[y=x\], then the equation of the circle is [RPET 1991; Roorkee 1989]

A. \[7{{x}^{2}}+7{{y}^{2}}-10x+10y-11=0\]
B. \[7{{x}^{2}}+7{{y}^{2}}+10x-10y-12=0\]
C. \[7{{x}^{2}}+7{{y}^{2}}-10x-10y-12=0\]
D. \[7{{x}^{2}}+7{{y}^{2}}-10x-12=0\]
Answer» D. \[7{{x}^{2}}+7{{y}^{2}}-10x-12=0\]
8562.

The point (2, 3) is a limiting point of a coaxial system of circles of which \[{{x}^{2}}+{{y}^{2}}=9\]is a member. The co-ordinates of the other limiting point is given by [MP PET 1993]

A. \[\left( \frac{18}{13},\frac{27}{13} \right)\]
B. \[\left( \frac{9}{13},\frac{6}{13} \right)\]
C. \[\left( \frac{18}{13},-\frac{27}{13} \right)\]
D. \[\left( -\frac{18}{13},-\frac{9}{13} \right)\]
Answer» B. \[\left( \frac{9}{13},\frac{6}{13} \right)\]
8563.

If P is a point such that the ratio of the squares of the lengths of the tangents from P to the circles\[{{x}^{2}}+{{y}^{2}}+2x-4y-20=0\] and \[{{x}^{2}}+{{y}^{2}}-4x+2y-44=0\] is 2 : 3, then the locus of P is a circle with centre [EAMCET 2003]

A. (7, - 8)
B. (- 7, 8)
C. (7, 8)
D. (- 7, - 8)
Answer» C. (7, 8)
8564.

The centre of the circle, which cuts orthogonally each of the three circles \[{{x}^{2}}+{{y}^{2}}+2x+17y+4=0,\] \[{{x}^{2}}+{{y}^{2}}+7x+6y+11=0,\] \[{{x}^{2}}+{{y}^{2}}-x+22y+3=0\] is [MP PET 2003]

A. (3, 2)
B. (1, 2)
C. (2, 3)
D. (0, 2)
Answer» B. (1, 2)
8565.

The radical centre of the circles \[{{x}^{2}}+{{y}^{2}}-16x+60=0,\,{{x}^{2}}+{{y}^{2}}-12x+27=0,\] \[{{x}^{2}}+{{y}^{2}}-12y+8=0\] is [RPET 2000]

A. (13, 33/4)
B. (33/4, -13)
C. (33/4, 13)
D. None of these
Answer» E.
8566.

The circles \[{{x}^{2}}+{{y}^{2}}+4x+6y+3=0\] and \[2({{x}^{2}}+{{y}^{2}})+6x+4y+C=0\] will cut orthogonally, if C equals [Kurukshetra CEE 1996]

A. 4
B. 18
C. 12
D. 16
Answer» C. 12
8567.

Consider the circles\[{{x}^{2}}+{{(y-1)}^{2}}=\] \[9,{{(x-1)}^{2}}+{{y}^{2}}=25\]. They are such that [EAMCET 1994]

A. These circles touch each other
B. One of these circles lies entirely inside the other
C. Each of these circles lies outside the other
D. They intersect in two points
Answer» C. Each of these circles lies outside the other
8568.

The equation of the circle through the point of intersection of the circles \[{{x}^{2}}+{{y}^{2}}-8x-2y+7=0\], \[{{x}^{2}}+{{y}^{2}}-4x+10y+8=0\] and (3, -3) is

A. \[23{{x}^{2}}+23{{y}^{2}}-156x+38y+168=0\]
B. \[23{{x}^{2}}+23{{y}^{2}}+156x+38y+168=0\]
C. \[{{x}^{2}}+{{y}^{2}}+156x+38y+168=0\]
D. None of these
Answer» B. \[23{{x}^{2}}+23{{y}^{2}}+156x+38y+168=0\]
8569.

For the given circles \[{{x}^{2}}+{{y}^{2}}-6x-2y+1=0\] and \[{{x}^{2}}+{{y}^{2}}+2x-8y+13=0\], which of the following is true [MP PET 1989]

A. One circle lies inside the other
B. One circle lies completely outside the other
C. Two circle intersect in two points
D. They touch each other
Answer» E.
8570.

If the circles \[{{x}^{2}}+{{y}^{2}}-9=0\]and \[{{x}^{2}}+{{y}^{2}}+2ax+2y+1=0\] touch each other, then a = [Roorkee Qualifying 1998]

A. - 4/ 3
B. 0
C. 1
D. 4/3
Answer» E.
8571.

The two circles \[{{x}^{2}}+{{y}^{2}}-4y=0\]and \[{{x}^{2}}+{{y}^{2}}-8y=0\] [BIT Ranchi 1985]

A. Touch each other internally
B. Touch each other externally
C. Do not touch each other
D. None of these
Answer» B. Touch each other externally
8572.

By the principle of induction \[\forall n\in N,{{3}^{2n}}\] when divided by 8, leaves remainder

A. 2
B. 3
C. 7
D. 1
Answer» E.
8573.

If \[P(n):''{{46}^{n}}+{{19}^{n}}+k\] is divisible by 64 for\[n\in N\]? is true, then the least negative integer value of k is.

A. -1
B. 1
C. 2
D. -2
Answer» B. 1
8574.

The greatest positive integer, which divides \[n(n+1)(n+2)(n+3)\] for all \[n\in N,\] is

A. 2
B. 6
C. 24
D. 120
Answer» D. 120
8575.

If \[A=\sum\limits_{n=1}^{\infty }{\frac{2n}{(2n-1)!}B=\sum\limits_{n=1}^{\infty }{\frac{2n}{(2n+1)!}}}\] then AB is equal to

A. \[{{e}^{2}}\]
B. e
C. \[e+{{e}^{2}}\]
D. 1
Answer» E.
8576.

If \[{{7}^{9}}+{{9}^{7}}\] is divided by 64 then the remainder is

A. 0
B. 1
C. 2
D. 63
Answer» B. 1
8577.

The value of\[\left( \begin{matrix} 30 \\ 0 \\ \end{matrix} \right)\left( \begin{matrix} 30 \\ 10 \\ \end{matrix} \right)-\left( \begin{matrix} 30 \\ 1 \\ \end{matrix} \right)\left( \begin{matrix} 30 \\ 11 \\ \end{matrix} \right)+\left( \begin{matrix} 30 \\ 2 \\ \end{matrix} \right)\left( \begin{matrix} 30 \\ 12 \\ \end{matrix} \right)...\]\[+\left( \begin{matrix} 30 \\ 20 \\ \end{matrix} \right)\left( \begin{matrix} 30 \\ 30 \\ \end{matrix} \right)\] is where \[\left( \begin{matrix} n \\ r \\ \end{matrix} \right)={{\,}^{n}}{{C}_{r}}\]

A. \[\left( \begin{matrix} 30 \\ 10 \\ \end{matrix} \right)\]
B. \[\left( \begin{matrix} 30 \\ 15 \\ \end{matrix} \right)\]
C. \[\left( \begin{matrix} 60 \\ 30 \\ \end{matrix} \right)\]
D. \[\left( \begin{matrix} 31 \\ 10 \\ \end{matrix} \right)\]
Answer» B. \[\left( \begin{matrix} 30 \\ 15 \\ \end{matrix} \right)\]
8578.

The coefficient of \[{{x}^{n}}\] in the expansion of \[{{(1-9x+20{{x}^{2}})}^{-1}}\] is

A. \[{{5}^{n}}-{{4}^{n}}\]
B. \[{{5}^{n+1}}-{{4}^{n+1}}\]
C. \[{{5}^{n-1}}-{{4}^{n-1}}\]
D. None of these
Answer» C. \[{{5}^{n-1}}-{{4}^{n-1}}\]
8579.

If the ratio of the 7th term from the beginning to the 7th term from the end in \[{{\left( \sqrt[3]{2}+\frac{1}{\sqrt[3]{3}} \right)}^{n}}\] is \[\frac{1}{6}\] them n equals to

A. 10
B. 9
C. 8
D. 12
Answer» C. 8
8580.

The minimum positive integral value of m such that \[{{(1073)}^{71}}-m\] may be divisible by 10, is

A. 1
B. 3
C. 7
D. 9
Answer» D. 9
8581.

The coefficient of \[{{x}^{100}}\] in the expansion of \[\sum\limits_{j=0}^{200}{{{(1+x)}^{j}}}\] is:

A. \[\left( \begin{align} & 200 \\ & 100 \\ \end{align} \right)\]
B. \[\left( \begin{align} & 201 \\ & 102 \\ \end{align} \right)\]
C. \[\left( \begin{align} & 200 \\ & 101 \\ \end{align} \right)\]
D. \[\left( \begin{align} & 201 \\ & 100 \\ \end{align} \right)\]
Answer» B. \[\left( \begin{align} & 201 \\ & 102 \\ \end{align} \right)\]
8582.

If 'n' is positive integer and three consecutive coefficient in the expansion of \[{{(1+x)}^{n}}\] are in the ratio 6 : 33 : 110, then n is equal to:

A. 9
B. 6
C. 12
D. 16
Answer» D. 16
8583.

\[1+\frac{1}{3}+\frac{1}{3}.\frac{3}{6}+\frac{1}{3}.\frac{3}{6}.\frac{5}{9}+.....\infty =\]

A. \[\sqrt{\frac{2}{3}}\]
B. \[\sqrt{2}\]
C. \[\sqrt{3}\]
D. \[\sqrt{\frac{3}{2}}\]
Answer» D. \[\sqrt{\frac{3}{2}}\]
8584.

The value of \[{{(}^{10}}{{C}_{0}})+{{(}^{10}}{{C}_{0}}{{+}^{10}}{{C}_{1}})+{{(}^{10}}{{C}_{0}}{{+}^{10}}{{C}_{1}})\] \[{{+}^{10}}{{C}_{2}})+.....+{{(}^{10}}{{C}_{0}}{{+}^{10}}{{C}_{1}}{{\,}^{10}}{{C}_{2}}+....{{+}^{10}}{{C}_{9}})\] is

A. \[{{2}^{10}}\]
B. \[{{10.2}^{9}}\]
C. \[{{10.2}^{10}}\]
D. None of these
Answer» C. \[{{10.2}^{10}}\]
8585.

In the binomial expansion \[{{(a+bx)}^{-3}}\] \[=\frac{1}{8}+\frac{9}{8}x+....\], then the value of a and b are:

A. a = 2, b = 3
B. a = 2, b = -6
C. a = 3, b = 2
D. a = -3, b = 2
Answer» C. a = 3, b = 2
8586.

\[\sqrt{5}[{{(\sqrt{5}+1)}^{50}}-{{(\sqrt{5}-1)}^{50}}]\] is

A. An irrational number
B. 0
C. A natural number
D. None of these
Answer» D. None of these
8587.

In the expansion of \[{{(1+x)}^{50}},\] the sum of the coefficient of odd powers of x is [UPSEAT 2001; Pb. CET 2004]

A. 0
B. \[{{2}^{49}}\]
C. \[{{2}^{50}}\]
D. \[{{2}^{51}}\]
Answer» C. \[{{2}^{50}}\]
8588.

If \[{{S}_{n}}=\sum\limits_{r=0}^{n}{\frac{1}{^{n}{{C}_{r}}}}\] and \[{{t}_{n}}=\sum\limits_{r=0}^{n}{\frac{r}{^{n}{{C}_{r}}}}\], then \[\frac{{{t}_{n}}}{{{S}_{n}}}\] is equal to [AIEEE 2004]

A. \[\frac{2n-1}{2}\]
B. \[\frac{1}{2}n-1\]
C. \[n-1\]
D. \[\frac{1}{2}n\]
Answer» E.
8589.

If \[{{(1+x)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}+....+{{C}_{n}}{{x}^{n}}\], then the value of \[{{C}_{0}}+2{{C}_{1}}+3{{C}_{2}}+....+(n+1){{C}_{n}}\]will be [MP PET 1996; RPET 1997; DCE 1995; AMU 1995; EAMCET 2001; IIT 1971]

A. \[(n+2){{2}^{n-1}}\]
B. \[(n+1){{2}^{n}}\]
C. \[(n+1){{2}^{n-1}}\]
D. \[(n+2){{2}^{n}}\]
Answer» B. \[(n+1){{2}^{n}}\]
8590.

\[{{C}_{0}}{{C}_{r}}+{{C}_{1}}{{C}_{r+1}}+{{C}_{2}}{{C}_{r+2}}+....+{{C}_{n-r}}{{C}_{n}}\]= [BIT Ranchi 1986]

A. \[\frac{(2n)!}{(n-r)\,!\,(n+r)!}\]
B. \[\frac{n!}{(-r)!(n+r)!}\]
C. \[\frac{n!}{(n-r)!}\]
D. None of these
Answer» B. \[\frac{n!}{(-r)!(n+r)!}\]
8591.

\[{{C}_{0}}-{{C}_{1}}+{{C}_{2}}-{{C}_{3}}+.....+{{(-1)}^{n}}{{C}_{n}}\] is equal to [MNR 1991; RPET 1995; UPSEAT 2000]

A. \[{{2}^{n}}\]
B. \[{{2}^{n}}-1\]
C. 0
D. \[{{2}^{n-1}}\]
Answer» D. \[{{2}^{n-1}}\]
8592.

The sum to \[(n+1)\] terms of the following series \[\frac{{{C}_{0}}}{2}-\frac{{{C}_{1}}}{3}+\frac{{{C}_{2}}}{4}-\frac{{{C}_{3}}}{5}+\]..... is

A. \[\frac{1}{n+1}\]
B. \[\frac{1}{n+2}\]
C. \[\frac{1}{n(n+1)}\]
D. None of these
Answer» E.
8593.

The expression \[{{(2+\sqrt{2})}^{4}}\] has value, lying between [AMU 2001]

A. 134 and 135
B. 135 and 136
C. 136 and 137
D. None of these
Answer» C. 136 and 137
8594.

The sum of the series 1\[\times \]3+3\[\times \]5+5\[\times \]7+..to n terms is

A. \[\frac{n(4{{n}^{2}}+6n)-1}{3}\]
B. \[\frac{n(n+1)(n+2)}{2}\]
C. \[\frac{(2n+1)(n+1)}{2}\]
D. \[\frac{{{n}^{2}}+1}{4}\]
Answer» B. \[\frac{n(n+1)(n+2)}{2}\]
8595.

The product of \[\cos \theta \cos 2\theta \cos 3\theta ...\cos ({{2}^{n-1}}\theta )\]is

A. \[\frac{\sin ({{2}^{n}}\theta )}{{{2}^{n}}\sin \theta }\]
B. \[\frac{cos({{2}^{n}}\theta )}{{{2}^{n}}\cos \theta }\]
C. \[\frac{cosn\theta }{{{2}^{n}}\cos \theta }\]
D. \[\frac{sin({{2}^{n}}\theta )}{\sin \theta }\]
Answer» B. \[\frac{cos({{2}^{n}}\theta )}{{{2}^{n}}\cos \theta }\]
8596.

\[\frac{(n+2)!}{(n-1)!}\]is divisible by

A. 4
B. 4
C. 6
D. 7
Answer» D. 7
8597.

The number of distinct terms in the expansion of \[{{\left( x+\frac{1}{x}+{{x}^{2}}+\frac{1}{{{x}^{2}}} \right)}^{15}}\]is/are (with respect to different power of x)

A. 255
B. 61
C. 127
D. none of these
Answer» C. 127
8598.

The coefficient of \[{{x}^{5}}\]in the expansion of \[{{({{x}^{2}}-x-2)}^{5}}\]is

A. -83
B. -82
C. -86
D. -81
Answer» E.
8599.

The fractional part of \[{{2}^{4n}}/15\]is \[(n\in N)\]

A. \[\frac{1}{15}\]
B. \[\frac{2}{15}\]
C. \[\frac{4}{15}\]
D. none of these
Answer» B. \[\frac{2}{15}\]
8600.

In the expansion of \[{{\left( \frac{1+x}{1-x} \right)}^{2}}\], the coefficient of \[{{x}^{n}}\] will be

A. \[4n\]
B. \[4n-3\]
C. \[4n+1\]
D. None of these
Answer» B. \[4n-3\]