Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

8451.

If the circles \[{{x}^{2}}+{{y}^{2}}+2ax+cy+a=0\] and \[{{x}^{2}}+{{y}^{2}}-3ax+dy-1=0\] intersect in two distinct points P and Q then the line \[5x+by-a=0\]passes through P and Q for

A. Exactly one value of a
B. No value of a
C. Infinitely many values of a
D. Exactly two values of a
Answer» C. Infinitely many values of a
8452.

If the line \[x\cos \alpha +y\sin \alpha =p\] represents the common chord of the circles \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\] and \[{{x}^{2}}+{{y}^{2}}+{{b}^{2}}(a>b),\] where A and B lie on the first circle and P and Q lie on the second circle, then AP is equal to

A. \[\sqrt{{{a}^{2}}+{{p}^{2}}}+\sqrt{{{b}^{2}}+{{p}^{2}}}\]
B. \[\sqrt{{{a}^{2}}-{{p}^{2}}}+\sqrt{{{b}^{2}}-{{p}^{2}}}\]
C. \[\sqrt{{{a}^{2}}-{{p}^{2}}}-\sqrt{{{b}^{2}}-{{p}^{2}}}\]
D. \[\sqrt{{{a}^{2}}+{{p}^{2}}}-\sqrt{{{b}^{2}}+{{p}^{2}}}\]
Answer» D. \[\sqrt{{{a}^{2}}+{{p}^{2}}}-\sqrt{{{b}^{2}}+{{p}^{2}}}\]
8453.

Distances form the origin to the centres of the three circles \[{{x}^{2}}+{{y}^{2}}-2{{\lambda }_{i}}x={{c}^{2}}\] (where c is constant and i= 1, 2, 3) are in GP. Then the lengths of tangents drawn from any point on the circle \[{{x}^{2}}+{{y}^{2}}={{c}^{2}}\] to these circles are in

A. A.P.
B. GP.
C. H.P.
D. None
Answer» C. H.P.
8454.

If the line \[x+y=1\] is a tangent to a circle with centre (2, 3), then its equation is

A. \[{{x}^{2}}+{{y}^{2}}+2x+2y+5=0\]
B. \[{{x}^{2}}+{{y}^{2}}-4x-6y+5=0\]
C. \[{{x}^{2}}+{{y}^{2}}-x-y+3=0\]
D. \[{{x}^{2}}+{{y}^{2}}+5x+2y=0\]
Answer» C. \[{{x}^{2}}+{{y}^{2}}-x-y+3=0\]
8455.

A line is drawn through a fixed point \[P(\alpha ,\beta )\] to cut the circle \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\] at A and B, then PA.PB is equal to

A. \[{{\alpha }^{2}}+{{\beta }^{2}}\]
B. \[{{\alpha }^{2}}+{{\beta }^{2}}-{{\alpha }^{2}}\]
C. \[{{\alpha }^{2}}\]
D. \[{{\alpha }^{2}}+{{\beta }^{2}}+{{\alpha }^{2}}\]
Answer» C. \[{{\alpha }^{2}}\]
8456.

Let S is a circle with centre \[(0,\sqrt{2}).\] Then

A. There cannot be any rational point on S
B. There can be infinitely many rational points on S
C. There can be at most two rational points on S
D. There are exactly two rational points on S
Answer» D. There are exactly two rational points on S
8457.

Let \[{{S}_{1}},{{S}_{2}}\] be the foci of the ellipse \[\frac{{{x}^{2}}}{16}+\frac{{{y}^{2}}}{8}=1.\]If \[A(x+y)\] is any point on the ellipse, then the maximum area of the triangle \[A{{S}_{1}}{{S}_{2}}\] (in square units) is

A. \[2\sqrt{2}\]
B. \[2\sqrt{3}\]
C. 8
D. 4
Answer» D. 4
8458.

If the centre of the circle passing through the origin is (3, 4), then the intercepts cut off by the circle on x-axis and y-axis respectively are

A. 3 unit and 4 unit
B. 6 unit and 4 unit
C. 3 unit and 8 unit
D. 6 unit and 8 unit
Answer» E.
8459.

If the parabola \[{{y}^{2}}=4ax\] passes through the point (1, ?2), then the tangent at this point is [MP PET 1998]

A. \[x+y-1=0\]
B. \[x-y-1=0\]
C. \[x+y+1=0\]
D. \[x-y+1=0\]
Answer» D. \[x-y+1=0\]
8460.

If line \[x=my+k\] touches the parabola \[{{x}^{2}}=4ay\], then \[k=\] [MP PET 1995]

A. \[\frac{a}{m}\]
B. am
C. \[a{{m}^{2}}\]
D. \[-a{{m}^{2}}\]
Answer» B. am
8461.

The locus of a foot of perpendicular drawn to the tangent of parabola \[{{y}^{2}}=4ax\] from focus, is [RPET 1989]

A. \[x=0\]
B. \[y=0\]
C. \[{{y}^{2}}=2a(x+a)\]
D. \[{{x}^{2}}+{{y}^{2}}(x+a)=0\]
Answer» B. \[y=0\]
8462.

The straight line \[y=2x+\lambda \] does not meet the parabola \[{{y}^{2}}=2x\], if [MP PET 1993; MNR 1977]

A. \[\lambda <\frac{1}{4}\]
B. \[\lambda >\frac{1}{4}\]
C. \[\lambda =4\]
D. \[\lambda =1\]
Answer» C. \[\lambda =4\]
8463.

The point of intersection of the latus rectum and axis of the parabola \[{{y}^{2}}+4x+2y-8=0\]

A. (5/4, ?1)
B. (9/4, ?1)
C. (7/2, 5/2)
D. None of these
Answer» B. (9/4, ?1)
8464.

Focus of the parabola \[{{(y-2)}^{2}}=20(x+3)\] is [Karnataka CET 1999]

A. (3, -2)
B. (2, -3)
C. (2, 2)
D. (3, 3)
Answer» D. (3, 3)
8465.

The length of latus rectum of the parabola \[4{{y}^{2}}+2x-20y+17=0\] is [MP PET 1999]

A. 3
B. 6
C. \[\frac{1}{2}\]
D. 9
Answer» D. 9
8466.

The equation of the locus of a point which moves so as to be at equal distances from the point (a, 0) and the y-axis is

A. \[{{y}^{2}}-2ax+{{a}^{2}}=0\]
B. \[{{y}^{2}}+2ax+{{a}^{2}}=0\]
C. \[{{x}^{2}}-2ay+{{a}^{2}}=0\]
D. \[{{x}^{2}}+2ay+{{a}^{2}}=0\]
Answer» B. \[{{y}^{2}}+2ax+{{a}^{2}}=0\]
8467.

Vertex of the parabola \[{{x}^{2}}+4x+2y-7=0\] is [MP PET 1990]

A. (?2, 11/2)
B. (?2, 2)
C. (?2, 11)
D. (2, 11)
Answer» B. (?2, 2)
8468.

The equation of latus rectum of a parabola is \[x+y=8\] and the equation of the tangent at the vertex is \[x+y=12\], then length of the latus rectum is [MP PET 2002]

A. \[4\sqrt{2}\]
B. \[2\sqrt{2}\]
C. 8
D. \[8\sqrt{2}\]
Answer» E.
8469.

Vertex of the parabola \[9{{x}^{2}}-6x+36y+9=0\] is

A. \[(1/3,\ -2/9)\]
B. \[(-1/3,\ -1/2)\]
C. \[(-1/3,\ 1/2)\]
D. \[(1/3,\ 1/2)\]
Answer» B. \[(-1/3,\ -1/2)\]
8470.

Locus of the poles of focal chords of a parabola is of parabola [EAMCET 2002]

A. The tangent at the vertex
B. The axis
C. A focal chord
D. The directrix
Answer» E.
8471.

The length intercepted by the curve \[{{y}^{2}}=4x\] on the line satisfying \[dy/dx=1\] and passing through point (0, 1) is given by [Orissa JEE 2005]

A. 1
B. 2
C. 0
D. None of these
Answer» D. None of these
8472.

The point on parabola \[2y={{x}^{2}}\], which is nearest to the point (0, 3) is [J & K 2005]

A. (±4, 8)
B. \[(\pm 1,\,1/2)\]
C. (±2, 2)
D. None of these
Answer» D. None of these
8473.

The polar of focus of parabola [RPET 1999]

A. x-axis
B. y-axis
C. Directrix
D. Latus rectum
Answer» D. Latus rectum
8474.

The area of triangle formed inside the parabola \[{{y}^{2}}=4x\] and whose ordinates of vertices are 1, 2 and 4 will be [RPET 1990]

A. \[\frac{7}{2}\]
B. \[\frac{5}{2}\]
C. \[\frac{3}{2}\]
D. \[\frac{3}{4}\]
Answer» E.
8475.

The length of the normal chord to the parabola \[{{y}^{2}}=4x\], which subtends right angle at the vertex is [RPET 1999]

A. \[6\sqrt{3}\]
B. \[3\sqrt{3}\]
C. 2
D. 1
Answer» B. \[3\sqrt{3}\]
8476.

The ends of latus rectum of parabola \[{{x}^{2}}+8y=0\] are [MP PET 1995]

A. (?4, ?2) and (4, 2)
B. (4, ?2) and (?4, 2)
C. (?4, ?2) and (4, ?2)
D. (4, 2) and (?4, 2)
Answer» D. (4, 2) and (?4, 2)
8477.

Tangents drawn at the ends of any focal chord of a parabola \[{{y}^{2}}=4ax\] intersect in the line

A. \[y-a=0\]
B. \[y+a=0\]
C. \[x-a=0\]
D. \[x+a=0\]
Answer» E.
8478.

If the normals at two points P and Q of a parabola \[{{y}^{2}}=4ax\] intersect at a third point R on the curve, then the product of ordinates of P and Q is

A. \[4{{a}^{2}}\]
B. \[2{{a}^{2}}\]
C. \[-4{{a}^{2}}\]
D. \[8{{a}^{2}}\]
Answer» E.
8479.

If the line \[2x+y+k=0\] is normal to the parabola \[{{y}^{2}}=-8x\], then the value of k will be [RPET 1986, 97]

A. \[-16\]
B. \[-8\]
C. \[-24\]
D. 24
Answer» E.
8480.

The maximum number of normal that can be drawn from a point to a parabola is [MP PET 1990]

A. 0
B. 1
C. 2
D. 3
Answer» E.
8481.

. The angle of intersection between the curves \[{{x}^{2}}=4(y+1)\] and \[{{x}^{2}}=-4(y+1)\] is [UPSEAT 2002]

A. \[\frac{\pi }{6}\]
B. \[\frac{\pi }{4}\]
C. 0
D. \[\frac{\pi }{2}\]
Answer» D. \[\frac{\pi }{2}\]
8482.

The equation of the tangent to the parabola \[{{y}^{2}}=16x\], which is perpendicular to the line \[y=3x+7\] is [MP PET 1998]

A. \[y-3x+4=0\]
B. \[3y-x+36=0\]
C. \[3y+x-36=0\]
D. \[3y+x+36=0\]
Answer» E.
8483.

If a double ordinate of the parabola \[{{y}^{2}}=4ax\] be of length \[8a\], then the angle between the lines joining the vertex of the parabola to the ends of this double ordinate is

A. 30o
B. 60o
C. 90o
D. 120o
Answer» D. 120o
8484.

If the chord y=mx+1 of the circle\[{{x}^{2}}+{{y}^{2}}=1\]subtends an angle of measure \[45{}^\circ \]at the major segment of the circle, then the value of m is

A. \[2\pm \sqrt{2}\]
B. \[-2\pm \sqrt{2}\]
C. \[-1\pm \sqrt{2}\]
D. None of these
Answer» D. None of these
8485.

The locus of the feet of the perpendiculars drawn from either focus on a variable tangent to the hyperbola\[16{{y}^{2}}-9{{x}^{2}}=1\]is

A. \[{{x}^{2}}+{{y}^{2}}=9\]
B. \[{{x}^{2}}+{{y}^{2}}=1/9\]
C. \[{{x}^{2}}+{{y}^{2}}=7/144\]
D. \[{{x}^{2}}+{{y}^{2}}=1/16\]
Answer» E.
8486.

The ellipse \[{{x}^{2}}+4{{y}^{2}}=4\]is inscribed in a rectangle aligned with the coordinate axes, which is in turn inscribed in another ellipse that passes through the point (4, 0). Then the equation of the ellipse is

A. \[{{x}^{2}}+16{{y}^{2}}=16\]
B. \[{{x}^{2}}+12{{y}^{2}}=16\]
C. \[4{{x}^{2}}+48{{y}^{2}}=48\]
D. \[4{{x}^{2}}+64{{y}^{2}}=48\]
Answer» C. \[4{{x}^{2}}+48{{y}^{2}}=48\]
8487.

The straight line \[x+y=\sqrt{2}p\]will touch the hyperbola \[4{{x}^{2}}-9{{y}^{2}}=36\], if [Orissa JEE 2003]

A. \[{{p}^{2}}=2\]
B. \[{{p}^{2}}=5\]
C. \[5{{p}^{2}}=2\]
D. \[2{{p}^{2}}=5\]
Answer» E.
8488.

The equation of the tangent to the hyperbola \[2{{x}^{2}}-3{{y}^{2}}=6\]which is parallel to the line \[y=3x+4\], is [MNR 1993]

A. \[y=3x+5\]
B. \[y=3x-5\]
C. \[y=3x+5\]and\[y=3x-5\]
D. None of these
Answer» D. None of these
8489.

In the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\], the equation of diameter conjugate to the diameter \[y=\frac{b}{a}x\], is

A. \[y=-\frac{b}{a}x\]
B. \[y=-\frac{a}{b}x\]
C. \[x=-\frac{b}{a}y\]
D. None of these
Answer» B. \[y=-\frac{a}{b}x\]
8490.

The equation \[{{x}^{2}}-16xy-11{{y}^{2}}-12x+6y+21=0\] represents

A. Parabola
B. Ellipse
C. Hyperbola
D. Two straight lines
Answer» D. Two straight lines
8491.

The distance of the point \['\theta '\]on the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] from a focus is

A. \[a(e+\cos \theta )\]
B. \[a(e-\cos \theta )\]
C. \[a(1+e\cos \theta )\]
D. \[a(1+2e\cos \theta )\]
Answer» D. \[a(1+2e\cos \theta )\]
8492.

If the centre, one of the foci and semi-major axis of an ellipse be (0, 0), (0, 3) and 5 then its equation is [AMU 1981]

A. \[\frac{{{x}^{2}}}{16}+\frac{{{y}^{2}}}{25}=1\]
B. \[\frac{{{x}^{2}}}{25}+\frac{{{y}^{2}}}{16}=1\]
C. \[\frac{{{x}^{2}}}{9}+\frac{{{y}^{2}}}{25}=1\]
D. None of these
Answer» B. \[\frac{{{x}^{2}}}{25}+\frac{{{y}^{2}}}{16}=1\]
8493.

The square root of 3 - 4i is [RPET 1999]

A. \[\pm (2+i)\]
B. \[\pm (2-i)\]
C. \[\pm (1-2i)\]
D. \[\pm (1+2i)\]
Answer» B. \[\pm (2-i)\]
8494.

If \[-1+\sqrt{-3}=r{{e}^{i\theta }},\]then \[\theta \] is equal to [RPET 1989; MP PET 1999]

A. \[\frac{\pi }{3}\]
B. \[-\frac{\pi }{3}\]
C. \[\frac{2\pi }{3}\]
D. \[-\frac{2\pi }{3}\]
Answer» D. \[-\frac{2\pi }{3}\]
8495.

The roots of the equation \[{{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}-4x+1=0\] are [MP PET 1986]

A. 1, 1, 1, 1
B. 2, 2, 2, 2
C. 3, 1, 3, 1
D. 1, 2, 1, 2
Answer» B. 2, 2, 2, 2
8496.

The roots of the equation \[{{x}^{4}}-2{{x}^{3}}+x=380\] are [UPSEAT 2004]

A. \[5,-4,\frac{1\pm 5\sqrt{-3}}{2}\]
B. \[-5,4,-\frac{1\pm 5\sqrt{-}3}{2}\]
C. \[5,4,\frac{-1\pm 5\sqrt{-}3}{2}\]
D. \[-5,-4,\frac{1\pm 5\sqrt{-}3}{2}\]
Answer» B. \[-5,4,-\frac{1\pm 5\sqrt{-}3}{2}\]
8497.

The roots of \[4{{x}^{2}}+6px+1=0\] are equal, then the value of p is [MP PET 2003]

A. \[\frac{4}{5}\]
B. \[\frac{1}{3}\]
C. \[\frac{2}{3}\]
D. \[\frac{4}{3}\]
Answer» D. \[\frac{4}{3}\]
8498.

The solution set of the equation \[pq{{x}^{2}}-{{(p+q)}^{2}}x+{{(p+q)}^{2}}=0\] is [Kerala (Engg.) 2005]

A. \[\left\{ \frac{p}{q},\,\frac{q}{p} \right\}\]
B. \[\left\{ pq,\,\frac{p}{q} \right\}\]
C. \[\left\{ \frac{q}{p},\,pq \right\}\]
D. \[\left\{ \frac{p+q}{p},\,\frac{p+q}{q} \right\}\]
Answer» E.
8499.

The expression \[y=a{{x}^{2}}+bx+c\] has always the same sign as c if

A. \[4ac<{{b}^{2}}\]
B. \[4ac>{{b}^{2}}\]
C. \[ac<{{b}^{2}}\]
D. \[ac>{{b}^{2}}\]
Answer» C. \[ac<{{b}^{2}}\]
8500.

Roots of the equations \[2{{x}^{2}}-5x+1=0\], \[{{x}^{2}}+5x+2=0\] are

A. Reciprocal and of same sign
B. Reciprocal and of opposite sign
C. Equal in product
D. None of these
Answer» C. Equal in product