

MCQOPTIONS
Saved Bookmarks
This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
8251. |
The gradient of the curve passing through (4, 0) is given by \[\frac{dy}{dx}-\frac{y}{x}+\frac{5x}{(x+2)(x-3)}=0\] if the point (5, a) lies on the curve, then the value of a is |
A. | \[\frac{67}{12}\] |
B. | \[5\sin \frac{7}{12}\] |
C. | \[5\log \frac{7}{12}\] |
D. | None of these |
Answer» D. None of these | |
8252. |
The solution of the differential equation\[\left\{ 1+x\sqrt{\left( {{x}^{2}}+{{y}^{2}} \right)} \right\}dx+\left\{ \sqrt{\left( {{x}^{2}}+{{y}^{2}} \right)}-1 \right\}ydy=0\] is |
A. | \[{{x}^{2}}+\frac{{{y}^{2}}}{2}+\frac{1}{3}{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{3/2}}=C\] |
B. | \[x-\frac{{{y}^{2}}}{3}+\frac{1}{2}{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{1/2}}=C\] |
C. | \[x-\frac{{{y}^{2}}}{2}+\frac{1}{3}{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{3/2}}=C\] |
D. | None of these |
Answer» D. None of these | |
8253. |
The differential equation of family of curves whose tangent form an angle of \[\pi /4\] with the hyperbola \[xy={{C}^{2}}\] is |
A. | \[\frac{dy}{dx}=\frac{{{x}^{2}}+{{C}^{2}}}{{{x}^{2}}-{{C}^{2}}}\] |
B. | \[\frac{dy}{dx}=\frac{{{x}^{2}}-{{C}^{2}}}{{{x}^{2}}+{{C}^{2}}}\] |
C. | \[\frac{dy}{dx}=-\frac{{{C}^{2}}}{{{x}^{2}}}\] |
D. | None of these |
Answer» C. \[\frac{dy}{dx}=-\frac{{{C}^{2}}}{{{x}^{2}}}\] | |
8254. |
The solution of the differential equation \[3{{e}^{x\tan }}y\,\,dx+(1-{{e}^{x}}){{\sec }^{2}}y\,\,dy=0\] is |
A. | \[{{e}^{x}}\tan y=C\] |
B. | \[C{{e}^{x}}={{(1-\tan \,\,y)}^{3}}\] |
C. | \[C\tan \,\,y={{(1-{{e}^{x}})}^{2}}\] |
D. | \[\tan \,\,y=C{{(1-{{e}^{x}})}^{3}}\] |
Answer» E. | |
8255. |
A curve passing through (2, 3) and satisfying the differential equation \[\int_{0}^{x}{ty(t)dt={{x}^{2}}y(x),(x>0)}\] is |
A. | \[{{x}^{2}}+{{y}^{2}}=13\] |
B. | \[{{y}^{2}}=\frac{9}{2}x\] |
C. | \[\frac{{{x}^{2}}}{8}+\frac{{{y}^{2}}}{18}=1\] |
D. | \[xy=c\] |
Answer» E. | |
8256. |
A function \[y=f(x)\] satisfies the differential equation \[\frac{dy}{dx}-y=\cos x-\sin x\] with initial condition that y is bounded when \[x\to \infty \]. The area enclosed by \[y=f(x),y=cos\,\,x\] and the y-axis is |
A. | \[\sqrt{2}-1\] |
B. | \[\sqrt{2}\] |
C. | 1 |
D. | \[\frac{1}{\sqrt{2}}\] |
Answer» B. \[\sqrt{2}\] | |
8257. |
What is the solution of the differential equation\[a\left( x\frac{dy}{dx}+2y \right)=xy\frac{dy}{dx}\]? |
A. | \[{{x}^{2}}=ky{{e}^{\frac{y}{a}}}\] |
B. | \[y{{x}^{2}}=ky{{e}^{\frac{y}{a}}}\] |
C. | \[{{y}^{2}}{{x}^{2}}=ky{{e}^{\frac{{{y}^{2}}}{a}}}\] |
D. | None of the above |
Answer» E. | |
8258. |
What is the solution of the differential equation\[\frac{dy}{dx}=\frac{y}{(x+2{{y}^{3}})}\]? |
A. | \[y(1-xy)=cx\] |
B. | \[{{y}^{3}}-x=cy\] |
C. | \[x(1-xy)=cy\] |
D. | \[x(1+xy)=cy\] |
Answer» C. \[x(1-xy)=cy\] | |
8259. |
The solutions of \[(x+y+1)\text{ }dy=dx\] are |
A. | \[x+y+2=C{{e}^{y}}\] |
B. | \[x+y+4=C\,log\,y\] |
C. | \[\log (x+y+2)=Cy\] |
D. | \[\log (x+y+2)=C-y\] |
Answer» B. \[x+y+4=C\,log\,y\] | |
8260. |
The expression which is the general solution of the differential equation \[\frac{dy}{dx}+\frac{x}{1-{{x}^{2}}}y=x\sqrt{y}\] is |
A. | \[\sqrt{y}+\frac{1}{3}(1-{{x}^{2}})=c{{(1-{{x}^{2}})}^{\frac{1}{4}}}\] |
B. | \[y{{(1-{{x}^{2}})}^{\frac{1}{4}}}=c(1-{{x}^{2}})\] |
C. | \[\sqrt{y}{{(1-{{x}^{2}})}^{\frac{1}{4}}}=\frac{1}{3}(1-{{x}^{2}})+c\] |
D. | None of these |
Answer» B. \[y{{(1-{{x}^{2}})}^{\frac{1}{4}}}=c(1-{{x}^{2}})\] | |
8261. |
The solution of differential equation\[yy'=x\left( \frac{{{y}^{2}}}{{{x}^{2}}}+\frac{f({{y}^{2}}/{{x}^{2}})}{f'({{y}^{2}}/{{x}^{2}})} \right)\] is |
A. | \[f({{y}^{2}}/{{x}^{2}})=c{{x}^{2}}\] |
B. | \[{{x}^{2}}f({{y}^{2}}/{{x}^{2}})={{c}^{2}}{{y}^{2}}\] |
C. | \[{{x}^{2}}f({{y}^{2}}/{{x}^{2}})=c\] |
D. | \[f({{y}^{2}}/{{x}^{2}})=cy/x\] |
Answer» B. \[{{x}^{2}}f({{y}^{2}}/{{x}^{2}})={{c}^{2}}{{y}^{2}}\] | |
8262. |
The degree of the differential equation \[y(x)=1+\frac{dy}{dx}+\frac{1}{1.2}{{\left( \frac{dy}{dx} \right)}^{2}}+\frac{1}{1.2.3}{{\left( \frac{dy}{dx} \right)}^{3}}+...\] is [Orissa JEE 2005] |
A. | 2 |
B. | 3 |
C. | 1 |
D. | None of these |
Answer» D. None of these | |
8263. |
The degree of differential equation \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+{{\left( \frac{dy}{dx} \right)}^{3}}+6y=0\] is [Kerala (Engg.) 2002] |
A. | 1 |
B. | 3 |
C. | 2 |
D. | 5 |
Answer» B. 3 | |
8264. |
The second order differential equation is [MP PET 2000] |
A. | \[{{{y}'}^{2}}+x={{y}^{2}}\] |
B. | \[{y}'{y}''+y=\sin x\] |
C. | \[{y}'''+{y}''+y=0\] |
D. | \[{y}'=y\] |
Answer» C. \[{y}'''+{y}''+y=0\] | |
8265. |
If m and n are the order and degree of the differential equation \[{{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{5}}+4\frac{{{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{3}}}{\left( \frac{{{d}^{3}}y}{d{{x}^{3}}} \right)}+\frac{{{d}^{3}}y}{d{{x}^{3}}}={{x}^{2}}-1\], then [Karnataka CET 1999] |
A. | m = 3 and n = 5 |
B. | m = 3 and n = 1 |
C. | m = 3 and n = 3 |
D. | m = 3 and n = 2 |
Answer» E. | |
8266. |
Order and degree of differential equation \[\frac{{{d}^{2}}y}{d{{x}^{2}}}={{\left\{ y+{{\left( \frac{dy}{dx} \right)}^{2}} \right\}}^{1/4}}\]are [MP PET 1996] |
A. | 4 and 2 |
B. | 1 and 2 |
C. | 1 and 4 |
D. | 2 and 4 |
Answer» E. | |
8267. |
The order of the differential equation of all circles of radius r, having centre on y-axis and passing through the origin is |
A. | 1 |
B. | 2 |
C. | 3 |
D. | 4 |
Answer» B. 2 | |
8268. |
The order of the differential equation whose solution is \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\], is [MP PET 1995] |
A. | 1 |
B. | 2 |
C. | 3 |
D. | 4 |
Answer» D. 4 | |
8269. |
The slope of the tangent at (x, y) to a curve passing through \[\left( 1,\frac{\pi }{4} \right)\] is given by \[\frac{y}{x}-{{\cos }^{2}}\left( \frac{y}{x} \right)\] , then the equation of |
A. | \[y={{\tan }^{-1}}\left( \log \left( \frac{e}{x} \right) \right)\] |
B. | \[y=x{{\tan }^{-1}}\left( \log \left( \frac{x}{e} \right) \right)\] |
C. | \[y=x{{\tan }^{-1}}\left( \log \left( \frac{e}{x} \right) \right)\] |
D. | None of thee |
Answer» D. None of thee | |
8270. |
The solution to the differential equation \[\frac{dy}{dx}=\frac{x+y}{x}\] satisfying the condition y(1)=1 is |
A. | \[y=\ln \,x+x\] |
B. | \[y=x\,\ln \,x+{{x}^{2}}\] |
C. | \[y=x{{e}^{(x-1)}}\] |
D. | \[y=x\,\,\ln \,x+x\] |
Answer» E. | |
8271. |
The normal to a curve at P(x, y) meets the x-axis at G. If the distance of G from the origin is twice the abscissa of P, then the curve is a |
A. | parabola |
B. | circle |
C. | hyperbola |
D. | ellipse |
Answer» D. ellipse | |
8272. |
The solution of the equation \[\frac{{{d}^{2}}y}{d{{x}^{2}}}={{e}^{-2x}}\] is [AIEEE 2002] |
A. | \[\frac{1}{4}{{e}^{-2x}}\] |
B. | \[\frac{1}{4}{{e}^{-2x}}+cx+d\] |
C. | \[\frac{1}{4}{{e}^{-2x}}+c{{x}^{2}}+d\] |
D. | \[\frac{1}{4}{{e}^{-2x}}+c+d\] |
Answer» C. \[\frac{1}{4}{{e}^{-2x}}+c{{x}^{2}}+d\] | |
8273. |
The solution of the differential equation \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=-\frac{1}{{{x}^{2}}}\] is [MP PET 2003] |
A. | \[y=\log x+{{c}_{1}}x+{{c}_{2}}\] |
B. | \[y=-\log x+{{c}_{1}}x+{{c}_{2}}\] |
C. | \[y=-\frac{1}{x}+{{c}_{1}}x+{{c}_{2}}\] |
D. | None of these |
Answer» B. \[y=-\log x+{{c}_{1}}x+{{c}_{2}}\] | |
8274. |
If \[\left[ \begin{matrix} x+y & 2x+z \\ x-y & 2z+w \\ \end{matrix} \right]=\left[ \begin{matrix} 4 & 7 \\ 0 & 10 \\ \end{matrix} \right]\], then values of\[x,y,z,w\]are [RPET 2002] |
A. | 2, 2, 3, 4 |
B. | 2, 3, 1, 2 |
C. | 3, 3, 0, 1 |
D. | None of these |
Answer» B. 2, 3, 1, 2 | |
8275. |
The matrix \[\left[ \begin{matrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \\ \end{matrix} \right]\]is non singular, if [Kurukshetra CEE 2002] |
A. | \[\lambda \ne -2\] |
B. | \[\lambda \ne 2\] |
C. | \[\lambda \ne 3\] |
D. | \[\lambda \ne -3\] |
Answer» B. \[\lambda \ne 2\] | |
8276. |
If \[A=\left[ \begin{matrix} 1 & 3 \\ 2 & 1 \\ \end{matrix} \right]\], then determinant of \[{{A}^{2}}-2A\]is [EAMCET 2000] |
A. | 5 |
B. | 25 |
C. | -5 |
D. | -25 |
Answer» C. -5 | |
8277. |
If \[A=\left[ \begin{matrix} 0 & i \\ -i & 0 \\ \end{matrix} \right]\], then the value of \[{{A}^{40}}\]is [RPET 1999] |
A. | \[\left[ \begin{matrix} 0 & 1 \\ 1 & 0 \\ \end{matrix} \right]\] |
B. | \[\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\] |
C. | \[\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix} \right]\] |
D. | \[\left[ \begin{matrix} -1 & 1 \\ 0 & -1 \\ \end{matrix} \right]\] |
Answer» C. \[\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix} \right]\] | |
8278. |
If \[A=\left[ \begin{matrix} x & 1 \\ 1 & 0 \\ \end{matrix} \right]\]and \[{{A}^{2}}\] is the identity matrix, then x = [EAMCET 1993] |
A. | 1 |
B. | 2 |
C. | 3 |
D. | 0 |
Answer» E. | |
8279. |
Matrix theory was introduced by |
A. | Newton |
B. | Cayley-Hamilton |
C. | Cauchy |
D. | Euclid |
Answer» C. Cauchy | |
8280. |
If \[A=\left[ \begin{matrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \\ \end{matrix} \right],B=\left[ \begin{matrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \\ \end{matrix} \right]\], then AB = [EAMCET 1987] |
A. | \[\left[ \begin{matrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -1 & 2 & 4 \\ \end{matrix} \right]\] |
B. | \[\left[ \begin{matrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \\ \end{matrix} \right]\] |
C. | \[\left[ \begin{matrix} 1 & 2 & 4 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \\ \end{matrix} \right]\] |
D. | None of these |
Answer» C. \[\left[ \begin{matrix} 1 & 2 & 4 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \\ \end{matrix} \right]\] | |
8281. |
If \[A=\left[ \begin{matrix} 0 & 1 \\ 1 & 0 \\ \end{matrix} \right],\]then \[{{A}^{4}}\]= [EAMCET 1994] |
A. | \[\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\] |
B. | \[\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix} \right]\] |
C. | \[\left[ \begin{matrix} 0 & 0 \\ 1 & 1 \\ \end{matrix} \right]\] |
D. | \[\left[ \begin{matrix} 0 & 1 \\ 1 & 0 \\ \end{matrix} \right]\] |
Answer» B. \[\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix} \right]\] | |
8282. |
\[A,B\] are n-rowed square matrices such that \[AB=O\]and B is non-singular. Then |
A. | \[A\ne O\] |
B. | \[A=O\] |
C. | \[A=I\] |
D. | None of these |
Answer» C. \[A=I\] | |
8283. |
If \[M=\left[ \begin{matrix} 1 & 2 \\ 2 & 3 \\ \end{matrix} \right]\]and \[{{M}^{2}}-\lambda M-{{I}_{2}}=0\], then \[\lambda =\] [MP PET 1990, 2001] |
A. | -2 |
B. | 2 |
C. | -4 |
D. | 4 |
Answer» E. | |
8284. |
If A is a square matrix of order n and \[A=k\]B, where k is a scalar, then |A|= [Karnataka CET 1992] |
A. | |B| |
B. | \[k|B|\] |
C. | \[{{k}^{n}}\]|B| |
D. | \[n|B|\] |
Answer» D. \[n|B|\] | |
8285. |
If \[A=\left[ \begin{matrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ -2 & 2 & 0 \\ \end{matrix} \right]\]and \[B=\left[ \begin{matrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & -4 & 0 \\ \end{matrix} \right]\], then the element of 3rd row and third column in AB will be |
A. | -18 |
B. | 4 |
C. | -12 |
D. | None of these |
Answer» C. -12 | |
8286. |
If \[A=\left[ \begin{matrix} 1/3 & 2 \\ 0 & 2x-3 \\ \end{matrix} \right],B=\left[ \begin{matrix} 3 & 6 \\ 0 & -1 \\ \end{matrix} \right]\]and \[AB=I\], then x = [MP PET 1987] |
A. | -1 |
B. | 1 |
C. | 0 |
D. | 2 |
Answer» C. 0 | |
8287. |
If \[x+y-z=0,\,3x-\alpha y-3z=0,\,\,x-3y+z=0\] has non zero solution, then \[\alpha =\] [MP PET 1990] |
A. | -1 |
B. | 0 |
C. | 1 |
D. | -3 |
Answer» E. | |
8288. |
The system of equations \[x+y+z=2\],\[3x-y+2z=6\] and \[3x+y+z=-18\] has [Kurukshetra CEE 2002] |
A. | A unique solution |
B. | No solutions |
C. | An infinite number of solutions |
D. | Zero solution as the only solution |
Answer» B. No solutions | |
8289. |
The system of equations\[x+y+z=6\], \[x+2y+3z=10,x+2y+\lambda z=\mu \], has no solution for [Orissa JEE 2003] |
A. | \[\lambda \ne 3,\mu =10\] |
B. | \[\lambda =3,\mu \ne 10\] |
C. | \[\lambda \ne 3,\mu \ne 10\] |
D. | None of these |
Answer» C. \[\lambda \ne 3,\mu \ne 10\] | |
8290. |
The value of k for which the set of equations\[x+ky+3z=0,\]\[3x+ky-2z=0,\]\[2x+3y-4z=0\]has a nontrivial solution over the set of rationals is [Kurukshetra CEE 1996] |
A. | 15 |
B. | 31/2 |
C. | 16 |
D. | 33/2 |
Answer» E. | |
8291. |
If \[{{D}_{r}}=\left| \begin{matrix} {{2}^{r-1}} & {{2.3}^{r-1}} & {{4.5}^{r-1}} \\ x & y & z \\ {{2}^{n}}-1 & {{3}^{n}}-1 & {{5}^{n}}-1 \\ \end{matrix} \right|\], then the value of \[\sum\limits_{r=1}^{n}{{{D}_{r}}=}\] |
A. | 1 |
B. | -1 |
C. | 0 |
D. | None of these |
Answer» D. None of these | |
8292. |
If A is a non- singular matrix, then A(adj A) = |
A. | A |
B. | I |
C. | |A|I |
D. | \[|A{{|}^{2}}I\] |
Answer» D. \[|A{{|}^{2}}I\] | |
8293. |
If \[A=\left[ \begin{matrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \\ \end{matrix} \right]\] and \[B=(adj\,A)\], and \[C=5A,\] then \[\frac{|adjB|}{|C|}\]= [Kerala (Engg.) 2005] |
A. | 5 |
B. | 25 |
C. | -1 |
D. | 1 |
Answer» E. | |
8294. |
Let \[A=\left( \begin{matrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \\ \end{matrix} \right)\] and \[(10)B=\left( \begin{matrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \\ \end{matrix} \right)\]. If B is the inverse of matrix A, then \[\alpha \]is [AIEEE 2004] |
A. | 5 |
B. | -1 |
C. | 2 |
D. | -2 |
Answer» B. -1 | |
8295. |
The multiplicative inverse of matrix \[\left[ \begin{matrix} 2 & 1 \\ 7 & 4 \\ \end{matrix} \right]\]is [DCE 2002] |
A. | \[\left[ \begin{matrix} 4 & -1 \\ -7 & -2 \\ \end{matrix} \right]\] |
B. | \[\left[ \begin{matrix} -4 & -1 \\ 7 & -2 \\ \end{matrix} \right]\] |
C. | \[\left[ \begin{matrix} 4 & -7 \\ 7 & 2 \\ \end{matrix} \right]\] |
D. | \[\left[ \begin{matrix} 4 & -1 \\ -7 & 2 \\ \end{matrix} \right]\] |
Answer» E. | |
8296. |
If \[A=\left[ \begin{matrix} 4 & 2 \\ 3 & 4 \\ \end{matrix} \right]\],then \[|adj\,\,A|\]is equal to [UPSEAT 2003] |
A. | 16 |
B. | 10 |
C. | 6 |
D. | None of these |
Answer» C. 6 | |
8297. |
The matrix \[\left[ \begin{matrix} \lambda & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2 \\ \end{matrix} \right]\]is invertible, if [Kurukshetra CEE 1996] |
A. | \[\lambda \ne -15\] |
B. | \[\lambda \ne -17\] |
C. | \[\lambda \ne -16\] |
D. | \[\lambda \ne -18\] |
Answer» C. \[\lambda \ne -16\] | |
8298. |
\[Adj.\]\[(AB)-(Adj.\,B)(Adj.\,A)=\] [MP PET 1997] |
A. | \[Adj.A-Adj\,B\] |
B. | I |
C. | O |
D. | None of these |
Answer» D. None of these | |
8299. |
If \[A=\left[ \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right]\], then which of the following statements is not correct [DCE 2001] |
A. | A is orthogonal matrix |
B. | \[{A}'\]is orthogonal matrix |
C. | Determinant A = 1 |
D. | A is not invertible |
Answer» E. | |
8300. |
The inverse of matrix \[A=\left[ \begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right]\]is [Karnataka CET 1993] |
A. | A |
B. | \[{{A}^{T}}\] |
C. | \[\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right]\] |
D. | \[\left[ \begin{matrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{matrix} \right]\] |
Answer» B. \[{{A}^{T}}\] | |