Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

8251.

The gradient of the curve passing through (4, 0) is given by \[\frac{dy}{dx}-\frac{y}{x}+\frac{5x}{(x+2)(x-3)}=0\] if the point (5, a) lies on the curve, then the value of a is

A. \[\frac{67}{12}\]
B. \[5\sin \frac{7}{12}\]
C. \[5\log \frac{7}{12}\]
D. None of these
Answer» D. None of these
8252.

The solution of the differential equation\[\left\{ 1+x\sqrt{\left( {{x}^{2}}+{{y}^{2}} \right)} \right\}dx+\left\{ \sqrt{\left( {{x}^{2}}+{{y}^{2}} \right)}-1 \right\}ydy=0\] is

A. \[{{x}^{2}}+\frac{{{y}^{2}}}{2}+\frac{1}{3}{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{3/2}}=C\]
B. \[x-\frac{{{y}^{2}}}{3}+\frac{1}{2}{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{1/2}}=C\]
C. \[x-\frac{{{y}^{2}}}{2}+\frac{1}{3}{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{3/2}}=C\]
D. None of these
Answer» D. None of these
8253.

The differential equation of family of curves whose tangent form an angle of \[\pi /4\] with the hyperbola \[xy={{C}^{2}}\] is

A. \[\frac{dy}{dx}=\frac{{{x}^{2}}+{{C}^{2}}}{{{x}^{2}}-{{C}^{2}}}\]
B. \[\frac{dy}{dx}=\frac{{{x}^{2}}-{{C}^{2}}}{{{x}^{2}}+{{C}^{2}}}\]
C. \[\frac{dy}{dx}=-\frac{{{C}^{2}}}{{{x}^{2}}}\]
D. None of these
Answer» C. \[\frac{dy}{dx}=-\frac{{{C}^{2}}}{{{x}^{2}}}\]
8254.

The solution of the differential equation \[3{{e}^{x\tan }}y\,\,dx+(1-{{e}^{x}}){{\sec }^{2}}y\,\,dy=0\] is

A. \[{{e}^{x}}\tan y=C\]
B. \[C{{e}^{x}}={{(1-\tan \,\,y)}^{3}}\]
C. \[C\tan \,\,y={{(1-{{e}^{x}})}^{2}}\]
D. \[\tan \,\,y=C{{(1-{{e}^{x}})}^{3}}\]
Answer» E.
8255.

A curve passing through (2, 3) and satisfying the differential equation \[\int_{0}^{x}{ty(t)dt={{x}^{2}}y(x),(x>0)}\] is

A. \[{{x}^{2}}+{{y}^{2}}=13\]
B. \[{{y}^{2}}=\frac{9}{2}x\]
C. \[\frac{{{x}^{2}}}{8}+\frac{{{y}^{2}}}{18}=1\]
D. \[xy=c\]
Answer» E.
8256.

A function \[y=f(x)\] satisfies the differential equation \[\frac{dy}{dx}-y=\cos x-\sin x\] with initial condition that y is bounded when \[x\to \infty \]. The area enclosed by \[y=f(x),y=cos\,\,x\] and the y-axis is

A. \[\sqrt{2}-1\]
B. \[\sqrt{2}\]
C. 1
D. \[\frac{1}{\sqrt{2}}\]
Answer» B. \[\sqrt{2}\]
8257.

What is the solution of the differential equation\[a\left( x\frac{dy}{dx}+2y \right)=xy\frac{dy}{dx}\]?

A. \[{{x}^{2}}=ky{{e}^{\frac{y}{a}}}\]
B. \[y{{x}^{2}}=ky{{e}^{\frac{y}{a}}}\]
C. \[{{y}^{2}}{{x}^{2}}=ky{{e}^{\frac{{{y}^{2}}}{a}}}\]
D. None of the above
Answer» E.
8258.

What is the solution of the differential equation\[\frac{dy}{dx}=\frac{y}{(x+2{{y}^{3}})}\]?

A. \[y(1-xy)=cx\]
B. \[{{y}^{3}}-x=cy\]
C. \[x(1-xy)=cy\]
D. \[x(1+xy)=cy\]
Answer» C. \[x(1-xy)=cy\]
8259.

The solutions of \[(x+y+1)\text{ }dy=dx\] are

A. \[x+y+2=C{{e}^{y}}\]
B. \[x+y+4=C\,log\,y\]
C. \[\log (x+y+2)=Cy\]
D. \[\log (x+y+2)=C-y\]
Answer» B. \[x+y+4=C\,log\,y\]
8260.

The expression which is the general solution of the differential equation \[\frac{dy}{dx}+\frac{x}{1-{{x}^{2}}}y=x\sqrt{y}\] is

A. \[\sqrt{y}+\frac{1}{3}(1-{{x}^{2}})=c{{(1-{{x}^{2}})}^{\frac{1}{4}}}\]
B. \[y{{(1-{{x}^{2}})}^{\frac{1}{4}}}=c(1-{{x}^{2}})\]
C. \[\sqrt{y}{{(1-{{x}^{2}})}^{\frac{1}{4}}}=\frac{1}{3}(1-{{x}^{2}})+c\]
D. None of these
Answer» B. \[y{{(1-{{x}^{2}})}^{\frac{1}{4}}}=c(1-{{x}^{2}})\]
8261.

The solution of differential equation\[yy'=x\left( \frac{{{y}^{2}}}{{{x}^{2}}}+\frac{f({{y}^{2}}/{{x}^{2}})}{f'({{y}^{2}}/{{x}^{2}})} \right)\] is

A. \[f({{y}^{2}}/{{x}^{2}})=c{{x}^{2}}\]
B. \[{{x}^{2}}f({{y}^{2}}/{{x}^{2}})={{c}^{2}}{{y}^{2}}\]
C. \[{{x}^{2}}f({{y}^{2}}/{{x}^{2}})=c\]
D. \[f({{y}^{2}}/{{x}^{2}})=cy/x\]
Answer» B. \[{{x}^{2}}f({{y}^{2}}/{{x}^{2}})={{c}^{2}}{{y}^{2}}\]
8262.

The degree of the differential equation \[y(x)=1+\frac{dy}{dx}+\frac{1}{1.2}{{\left( \frac{dy}{dx} \right)}^{2}}+\frac{1}{1.2.3}{{\left( \frac{dy}{dx} \right)}^{3}}+...\] is [Orissa JEE 2005]

A. 2
B. 3
C. 1
D. None of these
Answer» D. None of these
8263.

The degree of differential equation \[\frac{{{d}^{2}}y}{d{{x}^{2}}}+{{\left( \frac{dy}{dx} \right)}^{3}}+6y=0\] is [Kerala (Engg.) 2002]

A. 1
B. 3
C. 2
D. 5
Answer» B. 3
8264.

The second order differential equation is [MP PET 2000]

A. \[{{{y}'}^{2}}+x={{y}^{2}}\]
B. \[{y}'{y}''+y=\sin x\]
C. \[{y}'''+{y}''+y=0\]
D. \[{y}'=y\]
Answer» C. \[{y}'''+{y}''+y=0\]
8265.

If m and n are the order and degree of the differential equation \[{{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{5}}+4\frac{{{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{3}}}{\left( \frac{{{d}^{3}}y}{d{{x}^{3}}} \right)}+\frac{{{d}^{3}}y}{d{{x}^{3}}}={{x}^{2}}-1\], then [Karnataka CET 1999]

A. m = 3 and n = 5
B. m = 3 and n = 1
C. m = 3 and n = 3
D. m = 3 and n = 2
Answer» E.
8266.

Order and degree of differential equation \[\frac{{{d}^{2}}y}{d{{x}^{2}}}={{\left\{ y+{{\left( \frac{dy}{dx} \right)}^{2}} \right\}}^{1/4}}\]are [MP PET 1996]

A. 4 and 2
B. 1 and 2
C. 1 and 4
D. 2 and 4
Answer» E.
8267.

The order of the differential equation of all circles of radius r, having centre on y-axis and passing through the origin is

A. 1
B. 2
C. 3
D. 4
Answer» B. 2
8268.

The order of the differential equation whose solution is \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\], is [MP PET 1995]

A. 1
B. 2
C. 3
D. 4
Answer» D. 4
8269.

The slope of the tangent at (x, y) to a curve passing through \[\left( 1,\frac{\pi }{4} \right)\] is given by \[\frac{y}{x}-{{\cos }^{2}}\left( \frac{y}{x} \right)\] , then the equation of

A. \[y={{\tan }^{-1}}\left( \log \left( \frac{e}{x} \right) \right)\]
B. \[y=x{{\tan }^{-1}}\left( \log \left( \frac{x}{e} \right) \right)\]
C. \[y=x{{\tan }^{-1}}\left( \log \left( \frac{e}{x} \right) \right)\]
D. None of thee
Answer» D. None of thee
8270.

The solution to the differential equation \[\frac{dy}{dx}=\frac{x+y}{x}\] satisfying the condition y(1)=1 is

A. \[y=\ln \,x+x\]
B. \[y=x\,\ln \,x+{{x}^{2}}\]
C. \[y=x{{e}^{(x-1)}}\]
D. \[y=x\,\,\ln \,x+x\]
Answer» E.
8271.

The normal to a curve at P(x, y) meets the x-axis at G. If the distance of G from the origin is twice the abscissa of P, then the curve is a

A. parabola
B. circle
C. hyperbola
D. ellipse
Answer» D. ellipse
8272.

The solution of the equation \[\frac{{{d}^{2}}y}{d{{x}^{2}}}={{e}^{-2x}}\] is [AIEEE 2002]

A. \[\frac{1}{4}{{e}^{-2x}}\]
B. \[\frac{1}{4}{{e}^{-2x}}+cx+d\]
C. \[\frac{1}{4}{{e}^{-2x}}+c{{x}^{2}}+d\]
D. \[\frac{1}{4}{{e}^{-2x}}+c+d\]
Answer» C. \[\frac{1}{4}{{e}^{-2x}}+c{{x}^{2}}+d\]
8273.

The solution of the differential equation \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=-\frac{1}{{{x}^{2}}}\] is [MP PET 2003]

A. \[y=\log x+{{c}_{1}}x+{{c}_{2}}\]
B. \[y=-\log x+{{c}_{1}}x+{{c}_{2}}\]
C. \[y=-\frac{1}{x}+{{c}_{1}}x+{{c}_{2}}\]
D. None of these
Answer» B. \[y=-\log x+{{c}_{1}}x+{{c}_{2}}\]
8274.

If \[\left[ \begin{matrix} x+y & 2x+z \\ x-y & 2z+w \\ \end{matrix} \right]=\left[ \begin{matrix} 4 & 7 \\ 0 & 10 \\ \end{matrix} \right]\], then values of\[x,y,z,w\]are [RPET 2002]

A. 2, 2, 3, 4
B. 2, 3, 1, 2
C. 3, 3, 0, 1
D. None of these
Answer» B. 2, 3, 1, 2
8275.

The matrix \[\left[ \begin{matrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \\ \end{matrix} \right]\]is non singular, if [Kurukshetra CEE 2002]

A. \[\lambda \ne -2\]
B. \[\lambda \ne 2\]
C. \[\lambda \ne 3\]
D. \[\lambda \ne -3\]
Answer» B. \[\lambda \ne 2\]
8276.

If \[A=\left[ \begin{matrix} 1 & 3 \\ 2 & 1 \\ \end{matrix} \right]\], then determinant of \[{{A}^{2}}-2A\]is [EAMCET 2000]

A. 5
B. 25
C. -5
D. -25
Answer» C. -5
8277.

If \[A=\left[ \begin{matrix} 0 & i \\ -i & 0 \\ \end{matrix} \right]\], then the value of \[{{A}^{40}}\]is [RPET 1999]

A. \[\left[ \begin{matrix} 0 & 1 \\ 1 & 0 \\ \end{matrix} \right]\]
B. \[\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\]
C. \[\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix} \right]\]
D. \[\left[ \begin{matrix} -1 & 1 \\ 0 & -1 \\ \end{matrix} \right]\]
Answer» C. \[\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix} \right]\]
8278.

If \[A=\left[ \begin{matrix} x & 1 \\ 1 & 0 \\ \end{matrix} \right]\]and \[{{A}^{2}}\] is the identity matrix, then x = [EAMCET 1993]

A. 1
B. 2
C. 3
D. 0
Answer» E.
8279.

Matrix theory was introduced by

A. Newton
B. Cayley-Hamilton
C. Cauchy
D. Euclid
Answer» C. Cauchy
8280.

If \[A=\left[ \begin{matrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \\ \end{matrix} \right],B=\left[ \begin{matrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \\ \end{matrix} \right]\], then AB = [EAMCET 1987]

A. \[\left[ \begin{matrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -1 & 2 & 4 \\ \end{matrix} \right]\]
B. \[\left[ \begin{matrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \\ \end{matrix} \right]\]
C. \[\left[ \begin{matrix} 1 & 2 & 4 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \\ \end{matrix} \right]\]
D. None of these
Answer» C. \[\left[ \begin{matrix} 1 & 2 & 4 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \\ \end{matrix} \right]\]
8281.

If \[A=\left[ \begin{matrix} 0 & 1 \\ 1 & 0 \\ \end{matrix} \right],\]then \[{{A}^{4}}\]= [EAMCET 1994]

A. \[\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\]
B. \[\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix} \right]\]
C. \[\left[ \begin{matrix} 0 & 0 \\ 1 & 1 \\ \end{matrix} \right]\]
D. \[\left[ \begin{matrix} 0 & 1 \\ 1 & 0 \\ \end{matrix} \right]\]
Answer» B. \[\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix} \right]\]
8282.

\[A,B\] are n-rowed square matrices such that \[AB=O\]and B is non-singular. Then

A. \[A\ne O\]
B. \[A=O\]
C. \[A=I\]
D. None of these
Answer» C. \[A=I\]
8283.

If \[M=\left[ \begin{matrix} 1 & 2 \\ 2 & 3 \\ \end{matrix} \right]\]and \[{{M}^{2}}-\lambda M-{{I}_{2}}=0\], then \[\lambda =\] [MP PET 1990, 2001]

A. -2
B. 2
C. -4
D. 4
Answer» E.
8284.

If A is a square matrix of order n and \[A=k\]B, where k is a scalar, then |A|= [Karnataka CET 1992]

A. |B|
B. \[k|B|\]
C. \[{{k}^{n}}\]|B|
D. \[n|B|\]
Answer» D. \[n|B|\]
8285.

If \[A=\left[ \begin{matrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ -2 & 2 & 0 \\ \end{matrix} \right]\]and \[B=\left[ \begin{matrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & -4 & 0 \\ \end{matrix} \right]\], then the element of 3rd row and third column in AB will be

A. -18
B. 4
C. -12
D. None of these
Answer» C. -12
8286.

If \[A=\left[ \begin{matrix} 1/3 & 2 \\ 0 & 2x-3 \\ \end{matrix} \right],B=\left[ \begin{matrix} 3 & 6 \\ 0 & -1 \\ \end{matrix} \right]\]and \[AB=I\], then x = [MP PET 1987]

A. -1
B. 1
C. 0
D. 2
Answer» C. 0
8287.

If \[x+y-z=0,\,3x-\alpha y-3z=0,\,\,x-3y+z=0\] has non zero solution, then \[\alpha =\] [MP PET 1990]

A. -1
B. 0
C. 1
D. -3
Answer» E.
8288.

The system of equations \[x+y+z=2\],\[3x-y+2z=6\] and \[3x+y+z=-18\] has [Kurukshetra CEE 2002]

A. A unique solution
B. No solutions
C. An infinite number of solutions
D. Zero solution as the only solution
Answer» B. No solutions
8289.

The system of equations\[x+y+z=6\], \[x+2y+3z=10,x+2y+\lambda z=\mu \], has no solution for [Orissa JEE 2003]

A. \[\lambda \ne 3,\mu =10\]
B. \[\lambda =3,\mu \ne 10\]
C. \[\lambda \ne 3,\mu \ne 10\]
D. None of these
Answer» C. \[\lambda \ne 3,\mu \ne 10\]
8290.

The value of k for which the set of equations\[x+ky+3z=0,\]\[3x+ky-2z=0,\]\[2x+3y-4z=0\]has a nontrivial solution over the set of rationals is [Kurukshetra CEE 1996]

A. 15
B. 31/2
C. 16
D. 33/2
Answer» E.
8291.

If \[{{D}_{r}}=\left| \begin{matrix} {{2}^{r-1}} & {{2.3}^{r-1}} & {{4.5}^{r-1}} \\ x & y & z \\ {{2}^{n}}-1 & {{3}^{n}}-1 & {{5}^{n}}-1 \\ \end{matrix} \right|\], then the value of \[\sum\limits_{r=1}^{n}{{{D}_{r}}=}\]

A. 1
B. -1
C. 0
D. None of these
Answer» D. None of these
8292.

If A is a non- singular matrix, then A(adj A) =

A. A
B. I
C. |A|I
D. \[|A{{|}^{2}}I\]
Answer» D. \[|A{{|}^{2}}I\]
8293.

If \[A=\left[ \begin{matrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \\ \end{matrix} \right]\] and \[B=(adj\,A)\], and \[C=5A,\] then \[\frac{|adjB|}{|C|}\]= [Kerala (Engg.) 2005]

A. 5
B. 25
C. -1
D. 1
Answer» E.
8294.

Let \[A=\left( \begin{matrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \\ \end{matrix} \right)\] and \[(10)B=\left( \begin{matrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \\ \end{matrix} \right)\]. If B is the inverse of matrix A, then \[\alpha \]is [AIEEE 2004]

A. 5
B. -1
C. 2
D. -2
Answer» B. -1
8295.

The multiplicative inverse of matrix \[\left[ \begin{matrix} 2 & 1 \\ 7 & 4 \\ \end{matrix} \right]\]is [DCE 2002]

A. \[\left[ \begin{matrix} 4 & -1 \\ -7 & -2 \\ \end{matrix} \right]\]
B. \[\left[ \begin{matrix} -4 & -1 \\ 7 & -2 \\ \end{matrix} \right]\]
C. \[\left[ \begin{matrix} 4 & -7 \\ 7 & 2 \\ \end{matrix} \right]\]
D. \[\left[ \begin{matrix} 4 & -1 \\ -7 & 2 \\ \end{matrix} \right]\]
Answer» E.
8296.

If \[A=\left[ \begin{matrix} 4 & 2 \\ 3 & 4 \\ \end{matrix} \right]\],then \[|adj\,\,A|\]is equal to [UPSEAT 2003]

A. 16
B. 10
C. 6
D. None of these
Answer» C. 6
8297.

The matrix \[\left[ \begin{matrix} \lambda & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2 \\ \end{matrix} \right]\]is invertible, if [Kurukshetra CEE 1996]

A. \[\lambda \ne -15\]
B. \[\lambda \ne -17\]
C. \[\lambda \ne -16\]
D. \[\lambda \ne -18\]
Answer» C. \[\lambda \ne -16\]
8298.

\[Adj.\]\[(AB)-(Adj.\,B)(Adj.\,A)=\] [MP PET 1997]

A. \[Adj.A-Adj\,B\]
B. I
C. O
D. None of these
Answer» D. None of these
8299.

If \[A=\left[ \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right]\], then which of the following statements is not correct [DCE 2001]

A. A is orthogonal matrix
B. \[{A}'\]is orthogonal matrix
C. Determinant A = 1
D. A is not invertible
Answer» E.
8300.

The inverse of matrix \[A=\left[ \begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right]\]is [Karnataka CET 1993]

A. A
B. \[{{A}^{T}}\]
C. \[\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right]\]
D. \[\left[ \begin{matrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{matrix} \right]\]
Answer» B. \[{{A}^{T}}\]