Explore topic-wise MCQs in Joint Entrance Exam - Main (JEE Main).

This section includes 8666 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.

8201.

If \[y=\frac{1}{1+{{x}^{\beta -\alpha }}+{{x}^{\gamma -\alpha }}}+\frac{1}{1+{{x}^{\alpha -\beta }}+{{x}^{\gamma -\beta }}}+\frac{1}{1+{{x}^{\alpha -\gamma }}+{{x}^{\beta -\gamma }}}\]then \[\frac{dy}{dx}\] is equal to

A. 0
B. 1
C. \[(\alpha +\beta +\gamma ){{x}^{\alpha +\beta +\gamma -1}}\]
D. None of these
Answer» B. 1
8202.

Let \[f(x)=\sqrt{x-1}+\sqrt{x+24-10\sqrt{x-1}};\] \[1

A. 0
B. \[\frac{1}{\sqrt{x-1}}\]
C. \[2\sqrt{x-1}-5\]
D. None of these
Answer» B. \[\frac{1}{\sqrt{x-1}}\]
8203.

If \[\frac{d}{dx}\left( \frac{1+{{x}^{4}}+{{x}^{8}}}{1+{{x}^{2}}+{{x}^{4}}} \right)=a{{x}^{3}}+bx,\] then

A. \[a=4,b=2\]
B. \[a=4,b=-2\]
C. \[a=-2,b=4\]
D. None of these
Answer» C. \[a=-2,b=4\]
8204.

Let\[f(x)=\underset{n\,\to \,\infty }{\mathop{\lim }}\,\frac{\log (2+x)-{{x}^{2n}}\sin x}{1+{{x}^{2n}}}\]. Then

A. \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)\]
B. \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=sin1\]
C. \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)\] doesn?t exist
D. None of these
Answer» B. \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=sin1\]
8205.

Let \[f(x)=\left\{ \begin{matrix} x\sin \left( \frac{1}{x} \right)+\sin \left( \frac{1}{{{x}^{2}}} \right),x\ne 0 \\ 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x=0 \\ \end{matrix} \right.\]then \[\underset{x\to \infty }{\mathop{\lim }}\,f(x)\] equals

A. 0
B. \[-1/2\]
C. 1
D. None of these
Answer» D. None of these
8206.

If \[{{x}_{1}}=3\] and \[{{x}_{n+1}}=\sqrt{2+{{x}_{n}},}n\ge 1,\] then \[\underset{n\,\to \,\infty }{\mathop{\lim }}\,{{x}_{n}}\] is equal to

A. \[-1\]
B. \[2\]
C. \[\sqrt{5}\]
D. \[3\]
Answer» C. \[\sqrt{5}\]
8207.

Let \[f(x)={{x}^{2}}-1,0

A. \[{{x}^{2}}-6x+9=0\]
B. \[{{x}^{2}}-10x+21=0\]
C. \[{{x}^{2}}-14x+49=0\]
D. None of these
Answer» C. \[{{x}^{2}}-14x+49=0\]
8208.

Derivative of \[{{\left( \sqrt{x}+\frac{1}{\sqrt{x}} \right)}^{2}}\] is

A. \[\frac{1}{{{x}^{2}}}\]
B. \[1-\frac{1}{{{x}^{2}}}\]
C. 1
D. \[1+\frac{1}{{{x}^{2}}}\]
Answer» C. 1
8209.

A triangle has two of its vertices at \[P(a,0),Q(0,b)\] and the third vertex \[R(x,\,\,y)\] is moving along the straight line \[y=x.\] If A be the area of the triangle. Then \[\frac{dA}{dx}\] is equal to

A. \[\frac{a-b}{2}\]
B. \[\frac{a-b}{4}\]
C. \[=-\left( \frac{a+b}{2} \right)\]
D. \[\frac{a+b}{4}\]
Answer» D. \[\frac{a+b}{4}\]
8210.

If \[y=\left( 1+\frac{1}{x} \right)\left( 1+\frac{2}{x} \right)\left( 1+\frac{3}{x} \right)....\left( 1+\frac{n}{x} \right)\] and \[x\ne 0.\] then \[\frac{dy}{dx}\] when \[x=-1\] is

A. \[n!\]
B. \[(n-1)!\]
C. \[{{(-1)}^{n}}(n-1)!\]
D. \[{{(-1)}^{n}}n!\]
Answer» D. \[{{(-1)}^{n}}n!\]
8211.

Let \[f(x)=\alpha (x)\beta (x)\gamma (x)\] for all real x, where \[\alpha (x),\beta (x)\] and \[\gamma (x)\] are differentiable functions of\[x.\] If \[f'(2)=18f(2),\alpha '(2)=3\alpha (2),\beta '(2)=-4\beta (2)\] and \[\gamma '(2)-k\gamma (2),\] then the value of k is

A. 14
B. 16
C. 19
D. None of these
Answer» D. None of these
8212.

If \[\underset{x\to 0}{\mathop{\lim }}\,\,\,kx\cos ec\,x=\underset{x\to 0}{\mathop{\lim }}\,x\cos ec\,\,kx,\] then \[k=\]

A. 1
B. -1
C. \[\pm 1\]
D. \[\pm 2\]
Answer» D. \[\pm 2\]
8213.

If \[F(u)=f(x,\,y,\,z)\] be a homogeneous function of degree \[n\] in \[x,\,y,\,z\] then \[x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=\]

A. \[nu\]
B. \[n\,F(u)\]
C. \[\frac{n\,F(u)}{{F}'(u)}\]
D. None of these
Answer» D. None of these
8214.

If \[u={{\tan }^{-1}}\left( \frac{{{x}^{3}}+{{y}^{3}}}{x-y} \right)\], then \[x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=\] [EAMCET 1999]

A. \[\sin 2u\]
B. \[\cos 2u\]
C. \[\tan 2u\]
D. \[\sec 2u\]
Answer» B. \[\cos 2u\]
8215.

If \[z={{\tan }^{-1}}\left( \frac{x}{y} \right)\], then \[{{z}_{x}}:{{z}_{y}}=\]

A. \[y:x\]
B. \[x:y\]
C. \[-y:x\]
D. \[-x:y\]
Answer» D. \[-x:y\]
8216.

If \[z=\sec \,(y-ax)+\tan (y+ax),\] then \[\frac{{{\partial }^{2}}z}{\partial {{x}^{2}}}-{{a}^{2}}\frac{{{\partial }^{2}}z}{\partial {{y}^{2}}}=\] [EAMCET 2002]

A. z
B. 2z
C. 0
D. ?z
Answer» D. ?z
8217.

If \[{{z}^{2}}=\frac{{{x}^{1/2}}+{{y}^{1/2}}}{{{x}^{1/3}}+{{y}^{1/3}}}\] then \[x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=\] [EAMCET 1999]

A. \[\frac{z}{6}\]
B. \[\frac{z}{3}\]
C. \[\frac{z}{2}\]
D. \[\frac{z}{12}\]
Answer» E.
8218.

If \[\underset{x\to \infty }{\mathop{\lim }}\,\left\{ \frac{{{x}^{3}}+1}{{{x}^{2}}+1}-(ax+b) \right\}=2\], then

A. \[a=1,\text{ }b=1\]
B. \[a=1,\text{ }b=2\]
C. \[a=1,\text{ }v=-2\]
D. None of these
Answer» D. None of these
8219.

If \[\sqrt{1-{{x}^{2}}}+\sqrt{1-{{y}^{2}}}=a(x-y)\], then \[\frac{dy}{dx}\]=

A. \[\sqrt{\frac{1-{{x}^{2}}}{1-{{y}^{2}}}}\]
B. \[\sqrt{\frac{1-{{y}^{2}}}{1-{{x}^{2}}}}\]
C. \[\sqrt{\frac{{{x}^{2}}-1}{1-{{y}^{2}}}}\]
D. \[\sqrt{\frac{{{y}^{2}}-1}{1-{{x}^{2}}}}\]
Answer» C. \[\sqrt{\frac{{{x}^{2}}-1}{1-{{y}^{2}}}}\]
8220.

\[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \frac{{{x}^{2}}+5x+3}{{{x}^{2}}+x+3} \right)}^{1/x}}\]is equal to

A. \[{{e}^{4}}\]
B. \[{{e}^{2}}\]
C. \[{{e}^{3}}\]
D. 1
Answer» E.
8221.

\[\frac{d}{dx}{{\cos }^{-1}}\sqrt{\cos x}=\]

A. \[\frac{1}{2}\sqrt{1+\sec x}\]
B. \[\sqrt{1+\sec x}\]
C. \[-\frac{1}{2}\sqrt{1+\sec x}\]
D. \[-\sqrt{1+\sec x}\]
Answer» B. \[\sqrt{1+\sec x}\]
8222.

If \[y=\sqrt{x+\sqrt{x+\sqrt{x+........\text{to}}}}\infty \,,\,\text{then}\frac{dy}{dx}=\] [RPET 2002]

A. \[\frac{x}{2y-1}\]
B. \[\frac{2}{2y-1}\]
C. \[\frac{-1}{2y-1}\]
D. \[\frac{1}{2y-1}\]
Answer» E.
8223.

\[\frac{d}{dx}\{{{(\sin x)}^{x}}\}\]= [DSSE 1985, 87; AISSE 1983]

A. \[\left[ \frac{x\cos x+\sin x\log \sin x}{\sin x} \right]\]
B. \[{{(\sin x)}^{x}}\left[ \frac{x\cos x+\sin x\log \sin x}{\sin x} \right]\]
C. \[{{(\sin x)}^{x}}\left[ \frac{x\sin x+\sin x\log \sin x}{\sin x} \right]\]
D. None of these
Answer» C. \[{{(\sin x)}^{x}}\left[ \frac{x\sin x+\sin x\log \sin x}{\sin x} \right]\]
8224.

If \[y=\frac{\sqrt{a+x}-\sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}}\], then \[\frac{dy}{dx}=\] [AISSE 1986]

A. \[\frac{ay}{x\sqrt{{{a}^{2}}-{{x}^{2}}}}\]
B. \[\frac{ay}{\sqrt{{{a}^{2}}-{{x}^{2}}}}\]
C. \[\frac{ay}{x\sqrt{{{x}^{2}}-{{a}^{2}}}}\]
D. None of these
Answer» B. \[\frac{ay}{\sqrt{{{a}^{2}}-{{x}^{2}}}}\]
8225.

\[\frac{d}{dx}\left\{ \log \left( \frac{{{e}^{x}}}{1+{{e}^{x}}} \right) \right\}=\]

A. \[\frac{1}{1-{{e}^{x}}}\]
B. \[-\frac{1}{1+{{e}^{x}}}\]
C. \[-\frac{1}{1-{{e}^{x}}}\]
D. None of these
Answer» E.
8226.

If \[{{x}^{3}}+{{y}^{3}}-3axy=0\], then \[\frac{dy}{dx}\] equals [RPET 1996]

A. \[\frac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\]
B. \[\frac{ay-{{x}^{2}}}{ay-{{y}^{2}}}\]
C. \[\frac{{{x}^{2}}+ay}{{{y}^{2}}+ax}\]
D. \[\frac{{{x}^{2}}+ay}{ax-{{y}^{2}}}\]
Answer» B. \[\frac{ay-{{x}^{2}}}{ay-{{y}^{2}}}\]
8227.

The differential coefficient of \[{{x}^{6}}\] with respect to \[{{x}^{3}}\] is [EAMCET 1988; UPSEAT 2000]

A. \[5{{x}^{2}}\]
B. \[3{{x}^{3}}\]
C. \[5{{x}^{5}}\]
D. \[2{{x}^{3}}\]
Answer» E.
8228.

If \[y={{\tan }^{-1}}\left( \frac{x}{1+\sqrt{1-{{x}^{2}}}} \right)\], then \[\frac{dy}{dx}=\]

A. \[\frac{1}{2\sqrt{1-{{x}^{2}}}}\]
B. \[1-\sqrt{1-{{x}^{2}}}\]
C. \[\frac{1}{2}\]
D. \[\frac{1}{\sqrt{1-{{x}^{2}}}}\]
Answer» B. \[1-\sqrt{1-{{x}^{2}}}\]
8229.

If \[y={{\sin }^{-1}}\frac{2x}{1+{{x}^{2}}},\]where \[0

A. \[\frac{2}{1+{{x}^{2}}}\]
B. \[\frac{2x}{1+{{x}^{2}}}\]
C. \[\frac{-2}{1+{{x}^{2}}}\]
D. \[\frac{-x}{1+{{x}^{2}}}\]
Answer» B. \[\frac{2x}{1+{{x}^{2}}}\]
8230.

The general solution of the differential equation \[{{e}^{y}}\frac{dy}{dx}+({{e}^{y}}+1)\cot x=0\] is

A. \[({{e}^{y}}+1)\cos x=K\]
B. \[({{e}^{y}}+1)\text{cosec}\,x=K\]
C. \[({{e}^{y}}+1)\sin x=K\]
D. None of these
Answer» D. None of these
8231.

The solution of \[(x\sqrt{1+{{y}^{2}}})dx+(y\sqrt{1+{{x}^{2}}})dy=0\] is

A. \[\sqrt{1+{{x}^{2}}}+\sqrt{1+{{y}^{2}}}=c\]
B. \[\sqrt{1+{{x}^{2}}}-\sqrt{1+{{y}^{2}}}=c\]
C. \[{{(1+{{x}^{2}})}^{3/2}}+{{(1+{{y}^{2}})}^{3/2}}=c\]
D. None of these
Answer» B. \[\sqrt{1+{{x}^{2}}}-\sqrt{1+{{y}^{2}}}=c\]
8232.

The solution of the differential equation \[x({{e}^{2y}}-1)dy+({{x}^{2}}-1){{e}^{y}}dx=0\]is [AISSE 1990]

A. \[{{e}^{y}}+{{e}^{-y}}=\log x-\frac{{{x}^{2}}}{2}+c\]
B. \[{{e}^{y}}-{{e}^{-y}}=\log x-\frac{{{x}^{2}}}{2}+c\]\[\]
C. \[{{e}^{y}}+{{e}^{-y}}=\log x+\frac{{{x}^{2}}}{2}+c\]
D. None of these
Answer» B. \[{{e}^{y}}-{{e}^{-y}}=\log x-\frac{{{x}^{2}}}{2}+c\]\[\]
8233.

The solution of the equation \[\frac{dy}{dx}=y({{e}^{x}}+1)\]is [AISSE 1986; AI CBSE 1984]

A. \[y+{{e}^{({{e}^{x}}+x+c)}}=0\]
B. \[\log y={{e}^{x}}+x+c\]
C. \[\log y+{{e}^{x}}=x+c\]
D. None of these
Answer» C. \[\log y+{{e}^{x}}=x+c\]
8234.

The solution of the differential equation \[(1+{{x}^{2}})\frac{dy}{dx}=x(1+{{y}^{2}})\]is [AISSE 1983]

A. \[2{{\tan }^{-1}}y=\log (1+{{x}^{2}})+c\]
B. \[{{\tan }^{-1}}y=\log (1+{{x}^{2}})+c\]
C. \[2{{\tan }^{-1}}y+\log (1+{{x}^{2}})+c=0\]
D. None of these
Answer» B. \[{{\tan }^{-1}}y=\log (1+{{x}^{2}})+c\]
8235.

The solution of the differential equation \[(1+\cos x)dy=(1-\cos x)dx\]is

A. \[y=2\tan \frac{x}{2}-x+c\]
B. \[y=2\tan x+x+c\]
C. \[y=2\tan \frac{x}{2}+x+c\]
D. \[y=x-2\tan \frac{x}{2}+c\]
Answer» B. \[y=2\tan x+x+c\]
8236.

The solution of the differential equation \[({{x}^{2}}-y{{x}^{2}})\frac{dy}{dx}+{{y}^{2}}+x{{y}^{2}}=0\] is [Pb. CET 2003]

A. \[\log \left( \frac{x}{y} \right)=\frac{1}{x}+\frac{1}{y}+c\]
B. \[\log \left( \frac{y}{x} \right)=\frac{1}{x}+\frac{1}{y}+c\]
C. \[\log \left( xy \right)=\frac{1}{x}+\frac{1}{y}+c\]
D. \[\log \left( xy \right)+\frac{1}{x}+\frac{1}{y}=c\]
Answer» B. \[\log \left( \frac{y}{x} \right)=\frac{1}{x}+\frac{1}{y}+c\]
8237.

The solution of the differential equation \[\frac{dy}{dx}=(1+x)(1+{{y}^{2}})\] is

A. \[y=\tan ({{x}^{2}}+x+c)\]
B. \[y=\tan (2{{x}^{2}}+x+c)\]
C. \[y=\tan ({{x}^{2}}-x+c)\]
D. \[y=\tan \left( \frac{{{x}^{2}}}{2}+x+c \right)\]
Answer» E.
8238.

Consider a differential equation of order m and degree n. Which one of the following pairs is not feasible?

A. (3, 2)
B. (2, 3/2)
C. (2, 4)
D. (2, 2)
Answer» C. (2, 4)
8239.

What is the solution of the differential equation\[(x+y)(dx-dy)=dx+dy\]?

A. \[x+y+ln\,\,(x+y)=c\]
B. \[x-y+ln\,\,(x+y)=c\]
C. \[y-x+ln\,\,(x+y)=c\]
D. \[y-x-ln\,\,(x-y)=c\]
Answer» D. \[y-x-ln\,\,(x-y)=c\]
8240.

The solution to the differential equation\[\frac{dy}{dx}=\frac{yf'(x)-{{y}^{2}}}{f(x)}\]Where \[f(x)\] is a given function is

A. \[f(x)=y(x+c)\]
B. \[f(x)=cxy\]
C. \[f(x)=c(x+y)\]
D. \[yf(x)=cx\]
Answer» B. \[f(x)=cxy\]
8241.

What is the solution of the differential equation\[\frac{dx}{dy}+\frac{x}{y}-{{y}^{2}}=0\]?

A. \[xy={{x}^{4}}+c\]
B. \[xy={{y}^{4}}+c\]
C. \[4xy={{y}^{4}}+c\]
D. \[3xy={{y}^{3}}+c\] where c is an arbitrary constant.
Answer» D. \[3xy={{y}^{3}}+c\] where c is an arbitrary constant.
8242.

If \[y+x\frac{dy}{dx}=x\frac{\phi (xy)}{\phi '(xy)}\] then \[\phi (xy)\] is equation to

A. \[k{{e}^{{{x}^{2}}/2}}\]
B. \[k{{e}^{{{y}^{2}}/2}}\]
C. \[k{{e}^{xy/2}}\]
D. \[k{{e}^{xy}}\]
Answer» B. \[k{{e}^{{{y}^{2}}/2}}\]
8243.

What are the order and degree respectively of the differential equation\[y=x\frac{dy}{dx}+\frac{dx}{dy}\]?

A. 1, 1
B. 1, 2
C. 2, 1
D. 2, 2
Answer» C. 2, 1
8244.

What is the solution of the equation\[\ln \,\left( \frac{dy}{dx} \right)+x=0\]?

A. \[y+{{e}^{x}}=c\]
B. \[y-{{e}^{-x}}=c\]
C. \[y+{{e}^{-x}}=c\]
D. \[y-{{e}^{x}}=c\]
Answer» D. \[y-{{e}^{x}}=c\]
8245.

What is the solution of the differential equation\[\sin \left( \frac{dy}{dx} \right)-a=0\]?

A. \[y=x{{\sin }^{-1}}a+c\]
B. \[x=y{{\sin }^{-1}}a+c\]
C. \[y=x+x{{\sin }^{-1}}a+c\]
D. \[y=\,{{\sin }^{-1}}a+c\] where c is an arbitrary constant.
Answer» B. \[x=y{{\sin }^{-1}}a+c\]
8246.

Solution of the differential equation\[x=1+xy\frac{dy}{dx}+\frac{{{x}^{2}}{{y}^{2}}}{2!}{{\left( \frac{dy}{dx} \right)}^{2}}+\]\[\frac{{{x}^{3}}{{y}^{3}}}{3!}{{\left( \frac{dy}{dx} \right)}^{3}}+............\]

A. \[y=ln\,(x)+c\]
B. \[y=\,{{(ln\,x)}^{2}}+c\]
C. \[y=\pm \,ln\,(x)+c\]
D. \[xy={{x}^{y}}+c\]
Answer» D. \[xy={{x}^{y}}+c\]
8247.

The solution of the equation\[x\int\limits_{0}^{x}{y(t)dt=(x+1)\int_{0}^{x}{ty(t)dt,x>0}}\] is

A. \[y=\frac{c}{{{x}^{3}}}{{e}^{{{x}^{3}}}}\]
B. \[y=c{{x}^{3}}{{e}^{-{{x}^{3}}}}\]
C. \[\frac{c}{{{x}^{3}}}{{e}^{-x}}\]
D. None of these
Answer» E.
8248.

The solution of the differential equation\[x\sin x\frac{dy}{dx}+(x\cos x+\sin x)y=\sin x\]. When \[y(0)=0\] is

A. \[xy\sin x=1-\cos x\]
B. \[xy\sin x+\cos x=0\]
C. \[x\sin x+y\cos x=0\]
D. \[x\sin x+y\cos x=1\]
Answer» B. \[xy\sin x+\cos x=0\]
8249.

A continuously differentiable function \[\phi \,(x)\],\[x\in [0,\pi ]-\left\{ \frac{\pi }{2} \right\}\] satisfying \[y'=1+{{y}^{2}},y(0)=0=y(\pi )\] is

A. \[\tan x\]
B. \[x(x-\pi )\]
C. \[(x-\pi )(1-{{e}^{x}})\]
D. \[{{\sec }^{2}}x\]
Answer» B. \[x(x-\pi )\]
8250.

The solution of \[\frac{dy}{dx}=\frac{{{e}^{x}}({{\sin }^{2}}x+\sin 2x)}{y(2\,\,\log \,\,y+1)}\] is

A. \[{{y}^{2}}(\log \,y)-{{e}^{x}}{{\sin }^{2}}x+c=0\]
B. \[{{y}^{2}}(\log \,y)-{{e}^{x}}{{\cos }^{2}}x+c=0\]
C. \[{{y}^{2}}(\log \,y)+{{e}^{x}}{{\cos }^{2}}x+c=0\]
D. None of these
Answer» B. \[{{y}^{2}}(\log \,y)-{{e}^{x}}{{\cos }^{2}}x+c=0\]