 
			 
			MCQOPTIONS
 Saved Bookmarks
				This section includes 5 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.
| 1. | Consider a source-less 3-D steady-state diffusion problem. The general discretized equation is aP P = anb nb. What is aP? | 
| A. | a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub>+a<sub>T</sub>+a<sub>B</sub> | 
| B. | a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub> | 
| C. | a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub>+a<sub>T</sub> | 
| D. | a<sub>P</sub>=0 | 
| Answer» B. a<sub>P</sub>=a<sub>W</sub>+a<sub>E</sub>+a<sub>S</sub>+a<sub>N</sub> | |
| 2. | In a control volume adjacent to the boundary, the flux crossing the boundary is _______________ in the discretized equation. | 
| A. | set to some arbitrary constant | 
| B. | set to zero | 
| C. | introduced as a source term | 
| D. | introduced as a convective flux | 
| Answer» D. introduced as a convective flux | |
| 3. | I general, for all the steady-state diffusion problems, the discretized equation can be given as aP P = anb nb-S. For a one-dimensional problem, which of these is wrong? | 
| A. | a<sub>nb</sub> =a<sub>T</sub>+a<sub>B</sub> | 
| B. | a<sub>nb</sub> =a<sub>S</sub>+ a<sub>N</sub> | 
| C. | a<sub>nb</sub> =a<sub>W</sub>+a<sub>E</sub> | 
| D. | a<sub>nb</sub> =a<sub>P</sub>+a<sub>E</sub> | 
| Answer» E. | |
| 4. | The area in the western face of a 2-D steady-state diffusion stencil (uniform) is _______________ | 
| A. | grid size in the x-direction | 
| B. | grid size in the y-direction | 
| C. | product of the grid sizes in the x and y-directions | 
| D. | ratio of the grid sizes in the x and y-directions | 
| Answer» C. product of the grid sizes in the x and y-directions | |
| 5. | Which of these equations represent the semi-discretized equation of a 2-D steady-state diffusion problem? | 
| A. | ( int_A( Gamma A frac{ partial phi}{ partial x})dA+ int_A( Gamma A frac{ partial phi}{ partial y}) dA+ int_{ Delta V} S ,dV=0 ) | 
| B. | ( int_A frac{ partial}{ partial x}( Gamma A frac{ partial phi}{ partial x})dA+ int_A frac{ partial}{ partial y}( Gamma A frac{ partial phi}{ partial y})dA+ int_{ Delta V}S , dV=0 ) | 
| C. | ( int_A( Gamma A frac{d phi}{dx})dA+ int_A( Gamma A frac{d phi}{dy})dA+ int_{ Delta V}S , dV=0 ) | 
| D. | ( frac{ partial phi}{ partial t}+ int_A frac{ partial}{ partial x}( Gamma A frac{ partial phi}{ partial x}) dA+ int_A frac{ partial}{ partial y}( Gamma A frac{ partial phi}{ partial y})dA+ int_{ Delta V}S , dV=0 ) | 
| Answer» B. ( int_A frac{ partial}{ partial x}( Gamma A frac{ partial phi}{ partial x})dA+ int_A frac{ partial}{ partial y}( Gamma A frac{ partial phi}{ partial y})dA+ int_{ Delta V}S , dV=0 ) | |