

MCQOPTIONS
Saved Bookmarks
This section includes 91 Mcqs, each offering curated multiple-choice questions to sharpen your Mathematics knowledge and support exam preparation. Choose a topic below to get started.
51. |
\[\sinh ix\] is [EAMCET 2002] |
A. | \[i\sin (ix)\] |
B. | \[i\sin x\] |
C. | \[-i\sin x\] |
D. | \[\sin (ix)\] |
Answer» C. \[-i\sin x\] | |
52. |
If \[1,\,\omega ,\,{{\omega }^{2}}\] are the roots of unity, then \[{{(1-2\omega +{{\omega }^{2}})}^{6}}\] is equal to [Pb. CET 2001] |
A. | 729 |
B. | 246 |
C. | 243 |
D. | 81 |
Answer» B. 246 | |
53. |
If \[\omega \] is a complex cube root of unity, then\[225+\]\[{{(3\omega +8{{\omega }^{2}})}^{2}}\]\[+{{(3{{\omega }^{2}}+8\omega )}^{2}}=\] [EAMCET 2003] |
A. | 72 |
B. | 192 |
C. | 200 |
D. | 248 |
Answer» E. | |
54. |
If \[1,\omega ,{{\omega }^{2}}\] are three cube roots of unity, then \[{{(a+b\omega +c{{\omega }^{2}})}^{3}}\] + \[{{(a+b{{\omega }^{2}}+c\omega )}^{3}}\] is equal to, if \[a+b+c=0\] [West Bengal JEE 1992] |
A. | \[27\,abc\] |
B. | 0 |
C. | \[3\,abc\] |
D. | None of these |
Answer» B. 0 | |
55. |
If \[\omega (\ne 1)\] is a cube root of unity, then \[\left| \begin{matrix} 1 & 1+i+{{\omega }^{2}} & {{\omega }^{2}}\\ 1-i & -1 & {{\omega }^{2}}-1\\ -i & -i+\omega -1 & -1\\ \end{matrix} \right|\] is equal to [IIT 1995] |
A. | 0 |
B. | 1 |
C. | \[\omega \] |
D. | \[i\] |
Answer» B. 1 | |
56. |
The cube roots of unity when represented on the Argand plane form the vertices of an [IIT 1988; Pb. CET 2004] |
A. | Equilateral triangle |
B. | Isosceles triangle |
C. | Right angled triangle |
D. | None of these |
Answer» B. Isosceles triangle | |
57. |
If 1, \[\omega ,\,{{\omega }^{2}}\] are the cube roots of unity then \[{{\omega }^{2}}{{(1+\omega )}^{3}}-(1+{{\omega }^{2}})\omega =\] [Orissa JEE 2005] |
A. | 1 |
B. | -1 |
C. | i |
D. | 0 |
Answer» E. | |
58. |
If \[(1+i)(1+2i)(1+3i).....(1+ni)=a+ib\], then2.5.10....\[(1+{{n}^{2}})\]is equal to [Karnataka CET 2002; Kerala (Engg.) 2002] |
A. | \[{{a}^{2}}-{{b}^{2}}\] |
B. | \[{{a}^{2}}+{{b}^{2}}\] |
C. | \[\sqrt{{{a}^{2}}+{{b}^{2}}}\] |
D. | \[\sqrt{{{a}^{2}}-{{b}^{2}}}\] |
Answer» C. \[\sqrt{{{a}^{2}}+{{b}^{2}}}\] | |
59. |
Let \[\omega \] is an imaginary cube roots of unity then the value of\[2(\omega +1)({{\omega }^{2}}+1)+3(2\omega +1)(2{{\omega }^{2}}+1)+.....\]\[+(n+1)(n\omega +1)(n{{\omega }^{2}}+1)\]is [Orissa JEE 2002] |
A. | \[{{\left[ \frac{n(n+1)}{2} \right]}^{2}}+n\] |
B. | \[{{\left[ \frac{n(n+1)}{2} \right]}^{2}}\] |
C. | \[{{\left[ \frac{n(n+1)}{2} \right]}^{2}}-n\] |
D. | None of these |
Answer» B. \[{{\left[ \frac{n(n+1)}{2} \right]}^{2}}\] | |
60. |
Let \[{{z}_{1}}\] and \[{{z}_{2}}\] be nth roots of unity which are ends of a line segment that subtend a right angle at the origin.Then n must be of the form[IIT Screening 2001; Karnataka 2002] |
A. | 4k + 1 |
B. | 4k + 2 |
C. | 4k + 3 |
D. | 4k |
Answer» E. | |
61. |
If \[a=\cos (2\pi /7)+i\,\sin (2\pi /7),\] then the quadratic equation whose roots are \[\alpha =a+{{a}^{2}}+{{a}^{4}}\] and \[\beta ={{a}^{3}}+{{a}^{5}}+{{a}^{6}}\] is [RPET 2000] |
A. | \[{{x}^{2}}-x+2=0\] |
B. | \[{{x}^{2}}+x-2=0\] |
C. | \[{{x}^{2}}-x-2=0\] |
D. | \[{{x}^{2}}+x+2=0\] |
Answer» E. | |
62. |
Let \[a,b,c\] be real numbers \[a\ne 0\]. If \[\alpha \]is a root \[{{a}^{2}}{{x}^{2}}+bx+c=0\], \[\beta \] is a root of \[{{a}^{2}}{{x}^{2}}-bx-c=0\] and \[0<\alpha <\beta \], then the equation \[{{a}^{2}}{{x}^{2}}+2bx+2c=0\]has a root \[\gamma \]that always satisfies [IIT 1989] |
A. | \[\gamma =\frac{\alpha +\beta }{2}\] |
B. | \[\gamma =\alpha +\frac{\beta }{2}\] |
C. | \[\gamma =\alpha \] |
D. | \[\alpha <\gamma <\beta \] |
Answer» E. | |
63. |
The values of a for which \[2{{x}^{2}}-2\,(2a+1)\,\,x+a(a+1)=0\] may have one root less than a and other root greater than a are given by [UPSEAT 2001] |
A. | \[1>a>0\] |
B. | \[-1<a<0\] |
C. | \[a\ge 0\] |
D. | \[a>0\,\,\text{or}a<-1\] |
Answer» E. | |
64. |
The roots of the equation\[4{{x}^{4}}-24{{x}^{3}}+57{{x}^{2}}+18x-45=0\], If one of them is\[3+i\sqrt{6}\], are |
A. | \[3-i\sqrt{6},\pm \sqrt{\frac{3}{2}}\] |
B. | \[3-i\sqrt{6},\pm \frac{3}{\sqrt{2}}\] |
C. | \[3-i\sqrt{6},\pm \frac{\sqrt{3}}{2}\] |
D. | None of these |
Answer» D. None of these | |
65. |
The value of 'a' for which one root of the quadratic equation \[({{a}^{2}}-5a+3){{x}^{2}}+(3a-1)x+2=0\] is twice as large as the other, is [AIEEE 2003] |
A. | \[\frac{2}{3}\] |
B. | \[-\frac{2}{3}\] |
C. | \[\frac{1}{3}\] |
D. | \[-\frac{1}{3}\] |
Answer» B. \[-\frac{2}{3}\] | |
66. |
If \[{{x}^{2}}+px+q=0\] is the quadratic equation whose roots are a - 2 and b - 2 where a and b are the roots of \[{{x}^{2}}-3x+1=0\], then [Kerala (Engg.) 2002] |
A. | \[p=1,\,q=5\] |
B. | \[p=1,\,q=-5\] |
C. | \[p=-1,\,\,q=1\] |
D. | None of these |
Answer» E. | |
67. |
If the equations \[2{{x}^{2}}+3x+5\lambda =0\] and \[{{x}^{2}}+2x+3\lambda =0\] have a common root, then \[\lambda =\] [RPET 1989] |
A. | 0 |
B. | -1 |
C. | \[0,-1\] |
D. | 2,-1 |
Answer» D. 2,-1 | |
68. |
If\[a{{x}^{2}}+bx+c=0\], then x = [MP PET 1995] |
A. | \[\frac{b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] |
B. | \[\frac{-b\pm \sqrt{{{b}^{2}}-ac}}{2a}\] |
C. | \[\frac{2c}{-b\pm \sqrt{{{b}^{2}}-4ac}}\] |
D. | None of these |
Answer» D. None of these | |
69. |
For the equation \[|{{x}^{2}}|+|x|-6=0\], the roots are [EAMCET 1988, 93] |
A. | One and only one real number |
B. | Real with sum one |
C. | Real with sum zero |
D. | Real with product zero |
Answer» D. Real with product zero | |
70. |
If a, b be the roots of \[{{x}^{2}}+px+q=0\] and \[\alpha +h,\,\beta +h\] are the roots of \[{{x}^{2}}+rx+s=0\], then [AMU 2001] |
A. | \[\frac{p}{r}=\frac{q}{s}\] |
B. | \[2h=\left[ \frac{p}{q}+\frac{r}{s} \right]\] |
C. | \[{{p}^{2}}-4q={{r}^{2}}-4s\] |
D. | \[p{{r}^{2}}=q{{s}^{2}}\] |
Answer» D. \[p{{r}^{2}}=q{{s}^{2}}\] | |
71. |
For the equation \[3{{x}^{2}}+px+3=0,\,p>0\] if one of the root is square of the other, then p is equal to[IIT Screening 2000] |
A. | \[\frac{1}{3}\] |
B. | 1 |
C. | 3 |
D. | \[\frac{2}{3}\] |
Answer» D. \[\frac{2}{3}\] | |
72. |
The product of all real roots of the equation \[{{x}^{2}}-|x|-\,6=0\] is [Roorkee 2000] |
A. | -9 |
B. | 6 |
C. | 9 |
D. | 36 |
Answer» B. 6 | |
73. |
If \[x=\cos \theta +i\sin \theta \] and \[y=\cos \varphi +i\sin \varphi \],then \[{{x}^{m}}{{y}^{n}}+{{x}^{-m}}{{y}^{-n}}\] is equal to |
A. | \[\cos (m\theta +n\varphi )\] |
B. | \[\cos (m\theta +n\varphi )\] |
C. | \[2\cos (m\theta +n\varphi )\] |
D. | \[2\cos (m\theta -n\varphi )\] |
Answer» D. \[2\cos (m\theta -n\varphi )\] | |
74. |
If \[{{(1+x)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}+.....+{{C}_{n}}{{x}^{n}},\] then the value of \[{{C}_{0}}-{{C}_{2}}+{{C}_{4}}-{{C}_{6}}+.....\]is |
A. | \[{{2}^{n}}\] |
B. | \[{{2}^{n}}\cos \frac{n\pi }{2}\] |
C. | \[{{2}^{n}}\sin \frac{n\pi }{2}\] |
D. | \[{{2}^{n/2}}\cos \frac{n\pi }{4}\] |
Answer» E. | |
75. |
Let \[z,w\]be complex numbers such that \[\overline{z}+i\overline{w}=0\]and \[arg\,\,zw=\pi \]. Then arg z equals [AIEEE 2004] |
A. | \[5\pi /4\] |
B. | \[\pi /2\] |
C. | \[3\pi /4\] |
D. | \[\pi /4\] |
Answer» D. \[\pi /4\] | |
76. |
If one root of the equation \[a{{x}^{2}}+bx+c=0\]the square of the other, then\[a{{(c-b)}^{3}}=cX\], where X is |
A. | \[{{a}^{3}}+{{b}^{3}}\] |
B. | \[{{(a-b)}^{3}}\] |
C. | \[{{a}^{3}}-{{b}^{3}}\] |
D. | None of these |
Answer» C. \[{{a}^{3}}-{{b}^{3}}\] | |
77. |
In a triangle \[ABC\] the value of \[\angle A\] is given by \[5\cos A+3=0\], then the equationwhose roots are \[\sin A\] and \[\tan A\] will be [Roorkee 1972] |
A. | \[15{{x}^{2}}-8x+16=0\] |
B. | \[15{{x}^{2}}+8x-16=0\] |
C. | \[15{{x}^{2}}-8\sqrt{2}x+16=0\] |
D. | \[15{{x}^{2}}-8x-16=0\] |
Answer» C. \[15{{x}^{2}}-8\sqrt{2}x+16=0\] | |
78. |
If a root of the given equation \[a(b-c){{x}^{2}}+b(c-a)x+c(a-b)=0\]is 1, then the other will be [RPET 1986] |
A. | \[\frac{a(b-c)}{b(c-a)}\] |
B. | \[\frac{b(c-a)}{a(b-c)}\] |
C. | \[\frac{c(a-b)}{a(b-c)}\] |
D. | None of these |
Answer» D. None of these | |
79. |
If one root of the equation \[a{{x}^{2}}+bx+c=0\]be \[n\] times the other root, then |
A. | \[n{{a}^{2}}=bc{{(n+1)}^{2}}\] |
B. | \[n{{b}^{2}}=ac{{(n+1)}^{2}}\] |
C. | \[n{{c}^{2}}=ab{{(n+1)}^{2}}\] |
D. | None of these |
Answer» C. \[n{{c}^{2}}=ab{{(n+1)}^{2}}\] | |
80. |
The coefficient of \[x\] in the equation \[{{x}^{2}}+px+q=0\]was taken as 17 in place of 13, its roots were found to be -2 and -15, The roots of the original equation are[IIT 1977, 79] |
A. | 3, 10 |
B. | - 3, - 10 |
C. | - 5, - 18 |
D. | None of these |
Answer» C. - 5, - 18 | |
81. |
For positive integers \[{{n}_{1}},{{n}_{2}}\]the value of the expression\[{{(1+i)}^{{{n}_{1}}}}+{{(1+{{i}^{3}})}^{{{n}_{1}}}}+{{(1+{{i}^{5}})}^{{{n}_{2}}}}+{{(1+{{i}^{7}})}^{{{n}_{2}}}}\]where \[i=\sqrt{-1}\]is a real number if and only if [IIT 1996] |
A. | \[{{n}_{1}}={{n}_{2}}+1\] |
B. | \[{{n}_{1}}={{n}_{2}}-1\] |
C. | \[{{n}_{1}}={{n}_{2}}\] |
D. | \[{{n}_{1}}>0,{{n}_{2}}>0\] |
Answer» E. | |
82. |
The number of real values of \[a\] satisfying the equation \[{{a}^{2}}-2a\sin x+1=0\] is |
A. | Zero |
B. | One |
C. | Two |
D. | Infinite |
Answer» D. Infinite | |
83. |
If \[(3+i)z=(3-i)\bar{z},\] then complex number z is [AMU 2005] |
A. | \[x\,(3-i),\,x\in R\] |
B. | \[\frac{x}{3+i},\,x\in R\] |
C. | \[x(3+i),\,x\in R\] |
D. | \[x(-3+i),\,x\in R\] |
Answer» B. \[\frac{x}{3+i},\,x\in R\] | |
84. |
The values of \[x\] and \[y\] for which the numbers \[3+i{{x}^{2}}y\] and \[{{x}^{2}}+y+4i\] are conjugate complex can be |
A. | \[(-2,-1)\]or \[(2,-1)\] |
B. | \[(-1,\text{ }2)\]or \[(-2,\text{ }1)\] |
C. | \[(1,\,2)\]or \[(-1,-2)\] |
D. | None of these |
Answer» B. \[(-1,\text{ }2)\]or \[(-2,\text{ }1)\] | |
85. |
If\[|{{z}_{1}}|\,=\,|{{z}_{2}}|\] and \[amp\,{{z}_{1}}+amp\,\,{{z}_{2}}=0\], then [MP PET 1999] |
A. | \[{{z}_{1}}={{z}_{2}}\] |
B. | \[{{\bar{z}}_{1}}={{z}_{2}}\] |
C. | \[{{z}_{1}}+{{z}_{2}}=0\] |
D. | \[{{\bar{z}}_{1}}={{\bar{z}}_{2}}\] |
Answer» C. \[{{z}_{1}}+{{z}_{2}}=0\] | |
86. |
For any two complex numbers \[{{z}_{1}},{{z}_{2}}\]we have \[|{{z}_{1}}+{{z}_{2}}{{|}^{2}}=\] \[|{{z}_{1}}{{|}^{2}}+|{{z}_{2}}{{|}^{2}}\] then |
A. | \[\operatorname{Re}\left( \frac{{{z}_{1}}}{{{z}_{2}}} \right)=0\] |
B. | \[\operatorname{Im}\left( \frac{{{z}_{1}}}{{{z}_{2}}} \right)=0\] |
C. | \[\operatorname{Re}({{z}_{1}}{{z}_{2}})=0\] |
D. | \[\operatorname{Im}({{z}_{1}}{{z}_{2}})=0\] |
Answer» B. \[\operatorname{Im}\left( \frac{{{z}_{1}}}{{{z}_{2}}} \right)=0\] | |
87. |
Let \[z\] be a purely imaginary number such that \[\operatorname{Im}(z)<0\]. Then\[arg\,(z)\] is equal to |
A. | \[\pi \] |
B. | \[\frac{\pi }{2}\] |
C. | 0 |
D. | \[-\frac{\pi }{2}\] |
Answer» E. | |
88. |
The moduli of two complex numbers are less than unity, then the modulus of the sum of these complex numbers |
A. | Less than unity |
B. | Greater than unity |
C. | Equal to unity |
D. | Any |
Answer» E. | |
89. |
If \[{{x}^{2}}-hx-21=0,{{x}^{2}}-3hx+35=0\]\[(h>0)\]has a common root, then the value of \[h\] is equal to [EAMCET 1986] |
A. | 1 |
B. | 2 |
C. | 3 |
D. | 4 |
Answer» E. | |
90. |
The maximum possible number of real roots of equation \[{{x}^{5}}-6{{x}^{2}}-4x+5=0\] is [EAMCET 2002] |
A. | 0 |
B. | 3 |
C. | 4 |
D. | 5 |
Answer» C. 4 | |
91. |
Let \[\alpha ,\beta \] be the roots of \[{{x}^{2}}+(3-\lambda )x-\lambda =0.\]The value of \[\lambda \] for which \[{{\alpha }^{2}}+{{\beta }^{2}}\] is minimum, is [AMU 2002] |
A. | 0 |
B. | 1 |
C. | 2 |
D. | 3 |
Answer» D. 3 | |