

MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
701. |
In the dissociation of \[PC{{l}_{5}}\] as \[PC{{l}_{5}}(g)\rightleftharpoons PC{{l}_{3}}(g)+C{{l}_{2}}(g)\] if the degree of dissociation is a at equilibrium pressure P, then the equilibrium constant for the reaction is |
A. | \[{{K}_{P}}=\frac{{{\alpha }^{2}}}{1+{{\alpha }^{2}}P}\] |
B. | \[{{K}_{P}}=\frac{{{\alpha }^{2}}{{P}^{2}}}{1-{{\alpha }^{2}}}\] |
C. | \[{{K}_{P}}=\frac{{{P}^{2}}}{1-{{\alpha }^{2}}}\] |
D. | \[{{K}_{P}}=\frac{{{\alpha }^{2}}P}{1-{{\alpha }^{2}}}\] |
Answer» E. | |
702. |
Solid \[AgN{{O}_{3}}\] is slowly added to a solution containing each of 0.01M \[NaCl\] and 0.001 M \[NaBr.\] What will be the concentration of \[{{C}^{-}}\] ions in solution when \[AgBr\] will just start to precipitate? \[{{K}_{sp}}(AgBr)=3.6\times {{10}^{-13}},{{K}_{sp}}(AgCl)=1.8\times {{10}^{-10}}.\] |
A. | \[1.8\times {{10}^{-7}}\] |
B. | \[3.6\times {{10}^{-10}}\] |
C. | 0.01 |
D. | \[2\times {{10}^{-4}}\] |
Answer» D. \[2\times {{10}^{-4}}\] | |
703. |
The dissociation constants of a weak acid HA and weak base BOH are \[2\times {{10}^{-5}}\] and \[5\times {{10}^{-6}}\] respectively. The equilibrium constant for the neutralisation reaction of the two is |
A. | \[1.0\times {{10}^{4}}\] |
B. | \[1.0\times {{10}^{-4}}\] |
C. | \[1.0\times {{10}^{-10}}\] |
D. | \[2.5\times {{10}^{-1}}\] |
Answer» B. \[1.0\times {{10}^{-4}}\] | |
704. |
If \[{{K}_{sp}}(PbS{{O}_{4}})=1.8\times {{10}^{-8}}\] and \[{{K}_{a}}(HSO_{4}^{-})=1.0\times {{10}^{-2}}\] the equilibrium constant for the reaction. \[PbS{{O}_{4}}(s)+{{H}^{+}}(aq)\rightleftharpoons HSO_{4}^{-}(aq)+P{{b}^{2+}}(aq)\] is |
A. | \[1.8\times {{10}^{-6}}\] |
B. | \[1.8\times {{10}^{-10}}\] |
C. | \[2.8\times {{10}^{-10}}\] |
D. | \[1.0\times {{10}^{-2}}\] |
Answer» B. \[1.8\times {{10}^{-10}}\] | |
705. |
If \[p{{K}_{b}}\] for fluoride ion at \[25{}^\circ C\] is 10.83, the ionisation constant of hydrofluoric acid in water at this temperature is |
A. | \[3.52\times {{10}^{-3}}\] |
B. | \[6.75\times {{10}^{-4}}\] |
C. | \[5.38\times {{10}^{-2}}\] |
D. | \[1.74\times {{10}^{-5}}\] |
Answer» C. \[5.38\times {{10}^{-2}}\] | |
706. |
The solubility (in \[mol\text{ }{{L}^{-1}}\]) of \[AgCl\] \[({{K}_{sp}}=1.0\times {{10}^{-10}})\] in a 0.1 M \[KCl\] solution will be |
A. | \[1.0\times {{10}^{-9}}\] |
B. | \[1.0\times {{10}^{-10}}\] |
C. | \[1.0\times {{10}^{-5}}\] |
D. | \[1.0\times {{10}^{-11}}\] |
Answer» B. \[1.0\times {{10}^{-10}}\] | |
707. |
The 0.001M solution of \[Mg{{(N{{O}_{3}})}_{2}}\] is adjusted to pH 9, \[{{K}_{sp}}\] of \[Mg{{(OH)}_{2}}\] is \[8.9\times {{10}^{-12}}\]. At this pH |
A. | \[Mg{{(OH)}_{2}}\] will be precipitated |
B. | \[Mg{{(OH)}_{2}}\] is not precipitated |
C. | \[Mg{{\left( OH \right)}_{3}}\] will be precipitated |
D. | \[Mg{{\left( OH \right)}_{3}}\] is not precipitated |
Answer» C. \[Mg{{\left( OH \right)}_{3}}\] will be precipitated | |
708. |
3.2 moles of hydrogen iodide were heated in a sealed bulb at \[444{}^\circ C\] till the equilibrium state was reached. Its degree of dissociation at this temperature was found to be 22% The number of moles of hydrogen iodide present at equilibrium are |
A. | 2.496 |
B. | 1.87 |
C. | 2 |
D. | 4 |
Answer» B. 1.87 | |
709. |
What will be the \[{{H}^{+}}\] ion concentration in a solution prepared by mixing 50 mL of 0.20 \[M\,\,NaCl\] 25mL of \[0.10M\,NaOH\] and 25mL of 0.30\[NHCl\]? |
A. | 0.5 M |
B. | 0.05 M |
C. | 0.02M |
D. | 0.10M |
Answer» C. 0.02M | |
710. |
Which one of the following arrangements represents the correct order of solubilities of sparingly soluble salts \[H{{g}_{2}}C{{l}_{2}},\,\,C{{r}_{2}}{{(S{{O}_{4}})}_{3}},\] \[BaS{{O}_{4}}\] and \[CrC{{l}_{3}}\] respectively? |
A. | \[BaS{{O}_{4}}>H{{g}_{2}}C{{l}_{2}}>Cr{{(S{{O}_{4}})}_{3}}>CrC{{l}_{3}}\] |
B. | \[BaS{{O}_{4}}>H{{g}_{2}}C{{l}_{2}}>CrC{{l}_{3}}>C{{r}_{2}}{{(S{{O}_{4}})}_{3}}\] |
C. | \[BaS{{O}_{4}}>CrC{{l}_{3}}>H{{g}_{2}}C{{l}_{2}}>C{{r}_{2}}{{(S{{O}_{4}})}_{3}}\] |
D. | \[H{{g}_{2}}C{{l}_{2}}>BaS{{O}_{4}}>CrC{{l}_{3}}>C{{r}_{2}}{{(S{{O}_{4}})}_{3}}\] |
Answer» C. \[BaS{{O}_{4}}>CrC{{l}_{3}}>H{{g}_{2}}C{{l}_{2}}>C{{r}_{2}}{{(S{{O}_{4}})}_{3}}\] | |
711. |
The percentage hydrolysis of 0.15 M solution of ammonium acetate, \[{{K}_{a}}\] for \[C{{H}_{3}}COOH\]is \[1.8\times {{10}^{-5}}\] and \[{{K}_{b}}\] for \[N{{H}_{3}}\] is \[1.8\times {{10}^{-5}}\] |
A. | 0.55 |
B. | 4.72 |
C. | 9.38 |
D. | 5.56 |
Answer» B. 4.72 | |
712. |
On addition of increasing amount of \[AgN{{O}_{3}}\] to 0.1 M each of \[NaCl\] and \[NaBr\] in a solution, what % of \[B{{r}^{-}}\] ion get precipitated when \[C{{l}^{-}}\]ion starts precipitating.\[{{K}_{sp}}\left( AgCl \right)=1.0\times {{10}^{-10}}\], \[{{K}_{sp}}(AgBr)=1\times {{10}^{-13}}\] |
A. | 0.11 |
B. | 99.9 |
C. | 0.01 |
D. | 9.99 |
Answer» C. 0.01 | |
713. |
Solid \[Ba{{(N{{O}_{3}})}_{2}}\] is gradually dissolved in a \[1.0\times {{10}^{-4}}M\,N{{a}_{2}}C{{O}_{3}}\] solution. At which concentration of \[B{{a}^{2+}}\] precipitate of \[BaC{{O}_{3}}\] begins to form? (\[{{K}_{sp}}\] for \[BaC{{O}_{3}}=5.1\times {{10}^{-9}}\]) |
A. | \[5.1\times {{10}^{-5}}M\] |
B. | \[7.1\times {{10}^{-8}}M\] |
C. | \[4.1\times {{10}^{-5}}M\] |
D. | \[8.1\times {{10}^{-7}}M\] |
Answer» B. \[7.1\times {{10}^{-8}}M\] | |
714. |
Zirconium phosphate \[[Z{{r}_{3}}{{\left( P{{O}_{4}} \right)}_{4}}]\] dissociates into three zirconium cations of charge + 4 and four phosphate anions of charge \[-3\]. If molar solubility of zirconium phosphate is denoted by S and its solubility product by K then which of the following relationship between S and \[{{K}_{sp}}\] is correct? |
A. | \[S=\{{{K}_{sp}}/{{(6912)}^{1/7}}\}\] |
B. | \[S={{\{{{K}_{sp}}/144\}}^{1/7}}\] |
C. | \[S={{\{{{K}_{sp}}/6912\}}^{1/7}}\] |
D. | \[S={{\{{{K}_{sp}}/6912\}}^{7}}\] |
Answer» D. \[S={{\{{{K}_{sp}}/6912\}}^{7}}\] | |
715. |
How many gms of \[Ca{{C}_{2}}{{O}_{4}}\] will dissolve in one litre of saturated solution. \[{{K}_{sp}}\] of \[Ca{{C}_{2}}{{O}_{4}}\] is \[2.5\times {{10}^{-19}}\,mo{{l}^{2}}li{{t}^{-2}}\] |
A. | 0.0064 g |
B. | 0.0128 g |
C. | 0.0032 g |
D. | None of these |
Answer» B. 0.0128 g | |
716. |
If the equilibrium constant of the reaction of weak acid HA with strong base is\[{{10}^{-7}}\], then pOH of the aqueous solution of \[0.1M\text{ }NaA\] is |
A. | 8 |
B. | 10 |
C. | 4 |
D. | 5 |
Answer» D. 5 | |
717. |
A litre of solution is saturated with\[AgCl\]. To this solution if \[1.0\times {{10}^{-4}}\] mole of solid \[NaCl\] is added, what will be the\[\left[ A{{g}^{+}} \right]\], assuming no volume change? |
A. | More |
B. | Less |
C. | Equal |
D. | Zero |
Answer» C. Equal | |
718. |
The degree of hydrolysis in hydrolytic equilibrium \[{{A}^{-}}~+{{H}_{2}}O\rightleftharpoons HA+O{{H}^{-}}\] at salt concentration of 0.001 M is : \[({{K}_{a}}=1\times {{10}^{-5}})\] |
A. | \[1\times {{10}^{-3}}\] |
B. | \[1\times {{10}^{-4}}\] |
C. | \[5\times {{10}^{-4}}\] |
D. | \[1\times {{10}^{-6}}\] |
Answer» B. \[1\times {{10}^{-4}}\] | |
719. |
Consider the following equilibrium \[AgCl\downarrow +2N{{H}_{3}}\rightleftharpoons {{\left[ Ag{{(N{{H}_{3}})}_{2}} \right]}^{+}}+C{{l}^{-}}\] White precipitate of \[AgCl\] appears on adding which of the following? |
A. | \[N{{H}_{3}}\] |
B. | aqueous \[NaCl\] |
C. | aqueous\[HN{{O}_{3}}\] |
D. | aqueous \[N{{H}_{4}}Cl\] |
Answer» D. aqueous \[N{{H}_{4}}Cl\] | |
720. |
A buffer solution is prepared by mixing 10 mL of \[1.0M\,C{{H}_{3}}COOH\] and 20 mL of 0.5 M \[C{{H}_{3}}COONa\] and then diluted to 100 mL with distilled water. If \[p{{K}_{a}}\]of \[C{{H}_{3}}COOH\] is 4.76, what is the pH of the buffer solution? |
A. | 5.8 |
B. | 4.34 |
C. | 5.21 |
D. | 4.76 |
Answer» E. | |
721. |
The dissociation constant of two acids \[H{{A}_{1}}\] and \[H{{A}_{2}}\] are \[3.14\times {{10}^{-4}}\] and \[1.96\times {{10}^{-5}}\]respectively The relative strength of the acids will be approximately |
A. | 1:4 |
B. | 4:1 |
C. | 1:16 |
D. | 0.667361111111111 |
Answer» C. 1:16 | |
722. |
At 298K a 0.1 M \[C{{H}_{2}}COOH\]solution is 1.34 % ionized. The ionization constant \[{{K}_{a}}\]for acetic acid will be |
A. | \[1.82\times {{10}^{-5}}\] |
B. | \[18.2\times {{10}^{-5}}\] |
C. | \[0.182\times {{10}^{-5}}\] |
D. | None of these |
Answer» B. \[18.2\times {{10}^{-5}}\] | |
723. |
If degree of dissociation of pure water at\[100{}^\circ C\] is\[1.8\times {{10}^{-8}}\], then the dissociation constant of water will be (density of\[{{H}_{2}}O=1g/cc\]) |
A. | \[1\times {{10}^{-12}}\] |
B. | \[1\times {{10}^{-14}}\] |
C. | \[1.8\times {{10}^{-12}}\] |
D. | \[1.8\times {{10}^{-14}}\] |
Answer» E. | |
724. |
In some solutions, the concentration of \[{{H}_{2}}{{O}^{+}}\]remains constant even when small amounts of strong acid or strong base are added to them. These solutions are known as: |
A. | Ideal solutions |
B. | Colloidal solutions |
C. | True solutions |
D. | Buffer solutions |
Answer» E. | |
725. |
What would be the pH of a solution obtained by mixing 5g of acetic acid and 7.5g of sodium acetate and making the volume equal to 500 mL? \[({{K}_{a}}=1.75\times {{10}^{-5}},p{{K}_{a}}=4.76)\] |
A. | \[pH=4.70\] |
B. | pH < 4.70 |
C. | pH of solution will be equal to pH of acetic acid |
D. | 4.76 < pH < 5.0 |
Answer» E. | |
726. |
At \[25{}^\circ C\], the dissociation constant of a base, BOH, is \[1.0\times {{10}^{-12}}\]. The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be |
A. | \[1.0\times {{10}^{-5}}mol\,{{L}^{-1}}\] |
B. | \[1.0\times {{10}^{-6}}mol\,{{L}^{-1}}\] |
C. | \[2.0\times {{10}^{-6}}mol\text{ }{{L}^{-1}}\] |
D. | \[1.0\times {{10}^{-7}}mol\text{ }{{L}^{-1}}\] |
Answer» E. | |
727. |
In a reaction\[A+B~\rightleftharpoons C+D\], the initial concentrations, of A and B were 0.9 mol. \[d{{m}^{-3}}\]each. At equilibrium the concentration of D was found to be 0.6 mol \[d{{m}^{-3}}\]. What is the value of equilibrium constant for the reaction |
A. | 8 |
B. | 4 |
C. | 9 |
D. | 3 |
Answer» C. 9 | |
728. |
In a saturated solution of the sparingly soluble strong electrolyte \[AgI{{O}_{3}}\](molecular mass = 283) the equilibrium which sets is \[AgI{{O}_{3}}(s)\rightleftharpoons A{{g}^{+}}(aq)+IO_{3}^{-}(aq).\] If the solubility product constant \[{{K}_{sp}}\] of \[AgI{{O}_{3}}\] at a given temperature is \[1.0\times {{10}^{-8}}\], what is the mass of \[AgI{{O}_{3}}\] contained in 100 mL of its saturated solution? |
A. | \[1.0\times {{10}^{-4}}\]g |
B. | \[28.3\times {{10}^{-2}}g\] |
C. | \[2.83\times {{10}^{-3}}g\] |
D. | \[1.0\times {{10}^{-7}}g.\] |
Answer» D. \[1.0\times {{10}^{-7}}g.\] | |
729. |
For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ratio of the concentration of salt and acid should be \[({{K}_{a}}={{10}^{-5}})\] |
A. | 1:10 |
B. | 0.417361111111111 |
C. | 100:1 |
D. | 0.111111111111111 |
Answer» C. 100:1 | |
730. |
The dissociation constant of 0.1 M acetic acid solution is\[1.8\times {{10}^{-5}}\]. If 1 L of this solution is mixed with 0.05 mole of\[HCl\], what will be pH of mixture? \[\left[ log5=0.7 \right]\] |
A. | 1.3 |
B. | 2.6 |
C. | 1.9 |
D. | 3.4 |
Answer» B. 2.6 | |
731. |
Addition of which chemical will decrease the hydrogen ion concentration of an acetic acid solution |
A. | \[N{{H}_{4}}Cl\] |
B. | \[A{{l}_{2}}{{\left( S{{O}_{4}} \right)}_{3}}\] |
C. | \[AgN{{O}_{3}}\] |
D. | \[NaCN\] |
Answer» E. | |
732. |
Equimolar solutions of the following compounds are prepared separately in water. Which will have the lowest pH value? |
A. | \[BeC{{l}_{2}}\] |
B. | \[SrC{{l}_{2}}\] |
C. | \[CaC{{l}_{2}}\] |
D. | \[MgC{{l}_{2}}\] |
Answer» B. \[SrC{{l}_{2}}\] | |
733. |
The solubility product of \[A{{g}_{2}}Cr{{O}_{4}}\] is \[32\times {{10}^{-12}}\]. What is the concentration of \[CrO_{4}^{2-}\] ions in that solution (in g\[{{L}^{-1}}\]) |
A. | \[2\times {{10}^{-4}}\] |
B. | \[8\times {{10}^{-4}}\] |
C. | \[8\times {{10}^{-8}}\] |
D. | \[16\times {{10}^{-4}}\] |
Answer» B. \[8\times {{10}^{-4}}\] | |
734. |
The conjugate base of hydrazoic acid is: |
A. | \[{{N}^{-3}}\] |
B. | \[N_{3}^{-}\] |
C. | \[N_{2}^{-}\] |
D. | \[HN_{3}^{-}\] |
Answer» C. \[N_{2}^{-}\] | |
735. |
If 1.0 mole of \[{{I}_{2}}\] is introduced into 1.0 litre flask at 1000 K, at quilibrium \[({{K}_{c}}={{10}^{-6}})\], which one is correct |
A. | \[\left[ {{I}_{2}}(g) \right]>\left[ {{I}^{-}}\left( g \right) \right]\] |
B. | \[\left[ {{I}_{2}}(g) \right]<\left[ {{I}^{-}}\left( g \right) \right]\] |
C. | \[\left[ {{I}_{2}}(g) \right]=\left[ {{I}^{-}}\left( g \right) \right]\] |
D. | \[\left[ {{I}_{2}}(g) \right]=\frac{1}{2}\left[ {{I}^{-}}\left( g \right) \right]\] |
Answer» B. \[\left[ {{I}_{2}}(g) \right]<\left[ {{I}^{-}}\left( g \right) \right]\] | |
736. |
Why only \[A{{s}^{3+}}\] gets precipitated as \[A{{s}_{2}}{{S}_{3}}\] and not \[Z{{n}^{2+}}\]as ZnS when \[{{H}_{2}}S\] is passed through an acidic solution containing \[A{{s}^{3+}}\] and\[Z{{n}^{2+}}\]? |
A. | Solubility product of \[A{{s}_{2}}{{S}_{3}}\] is less than that of ZnS |
B. | Enough \[A{{s}^{3+}}\]are present in acidic medium |
C. | Zinc salt does not ionise in acidic medium |
D. | Solubility product changes in presence of an acid |
Answer» B. Enough \[A{{s}^{3+}}\]are present in acidic medium | |
737. |
The degree of dissociation of 0.1 M weak acid HA is 0.5%. If 2 mL of 1.0 M HA solution is diluted to 32 mL the degree of dissociation of acid and \[{{H}_{3}}{{O}^{+}}\] ion concentration in the resulting solution will be respectively |
A. | 0.02 and \[3.125\times {{10}^{-4}}\] |
B. | \[1.25\times {{10}^{-3}}\] and 0.02 |
C. | 0.02 and \[1.25\times {{10}^{-3}}\] |
D. | 0.02 and \[8.0\times {{10}^{-12}}\] |
Answer» D. 0.02 and \[8.0\times {{10}^{-12}}\] | |
738. |
What happens when an inert gas is added to an equilibrium keeping volume unchanged? |
A. | More product will form |
B. | Less product will form |
C. | More reactant will form |
D. | Equilibrium will remain unchanged |
Answer» E. | |
739. |
Calculate the pH of a solution containing 0.1 M \[HCO_{3}^{-}\] and \[0.2\,M\,CO_{3}^{2-}\] \[[{{K}_{1}}({{H}_{2}}CO_{3}^{-})=4.2\times {{10}^{-7}}\times 10\]and \[{{K}_{2}}(HCO_{3}^{-})=4.8\times {{10}^{-11}}].\] |
A. | 3.18 |
B. | 10.62 |
C. | 6.62 |
D. | 9.31 |
Answer» C. 6.62 | |
740. |
If the reaction between \[C{{O}_{2}}\] and \[{{H}_{2}}O\]is \[C{{O}_{2}}+{{H}_{2}}O\rightleftharpoons {{H}_{2}}C{{O}_{3}}\rightleftharpoons {{H}^{+}}+HCO_{3}^{-}\] If \[C{{O}_{2}}\] escapes from the system |
A. | pH will decrease |
B. | \[{{H}^{+}}\] concentration will decrease |
C. | \[{{H}_{2}}C{{O}_{3}}\] concentration will be altered |
D. | The forward reaction is promoted |
Answer» C. \[{{H}_{2}}C{{O}_{3}}\] concentration will be altered | |
741. |
Assuming that the buffer in the blood is \[C{{O}_{2}}-HCO_{3}^{-}\]. Calculate the ratio of conjugate base to acid necessary to maintain blood at its proper pH of 7.4. \[{{K}_{1}}({{H}_{2}}CO{{ }_{3}})=4.5\times {{10}^{-7}}\] |
A. | 11 |
B. | 8 |
C. | 6 |
D. | 14 |
Answer» B. 8 | |
742. |
Which of the following statements about pH and \[{{H}^{+}}\] ion concentration is incorrect? |
A. | Addition of one drop of concentrated \[HCl\] in \[N{{H}_{4}}OH\] solution decreases pH of the solution. |
B. | A solution of the mixture of one equivalent of each of \[C{{H}_{3}}COOH\] and \[NaOH\] has a pH of 7 |
C. | pH of pure neutral water is not zero |
D. | A cold and concentrated \[{{H}_{2}}S{{O}_{4}}\] has lower \[{{H}^{+}}\] ion concentration than a dilute solution of\[{{H}_{2}}S{{O}_{4}}\] |
Answer» C. pH of pure neutral water is not zero | |
743. |
Given(i) \[HCN(aq)+{{H}_{2}}O(l)\rightleftharpoons \] \[{{H}_{3}}{{O}^{+}}(aq)+C{{N}^{-}}(aq){{K}_{a}}=6.2\times {{10}^{-10}}\](ii) \[C{{N}^{-}}(aq)+{{H}_{2}}O(l)\rightleftharpoons \] \[HCN(aq)+O{{H}^{-}}(aq){{K}_{b}}=1.6\times {{10}^{-5}}.\]These equilibria show the following order of the relative base strength, |
A. | \[O{{H}^{-}}>{{H}_{2}}O>C{{N}^{-}}\] |
B. | \[O{{H}^{-}}>C{{N}^{-}}>{{H}_{2}}O\] |
C. | \[{{H}_{2}}O>C{{N}^{-}}>O{{H}^{-}}\] |
D. | \[C{{N}^{-}}>{{H}_{2}}O>O{{H}^{-}}\] |
Answer» C. \[{{H}_{2}}O>C{{N}^{-}}>O{{H}^{-}}\] | |
744. |
If \[{{K}_{1}}\] and \[{{K}_{2}}\] are respective equilibrium constants for the two reactions \[Xe{{F}_{6}}(g)+{{H}_{2}}O(g)\rightleftharpoons XeO{{F}_{4}}(g)+2HF(g)\] \[Xe{{O}_{4}}(g)+Xe{{F}_{6}}(g)\rightleftharpoons XeO{{F}_{4}}(g)+Xe{{O}_{3}}{{F}_{2}}(g)\] the equilibrium constant for the reaction \[Xe{{O}_{4}}(g)+2HF(g)\rightleftharpoons Xe{{O}_{3}}{{F}_{2}}(g)+{{H}_{2}}O(g)\] will be |
A. | \[\frac{{{K}_{1}}}{K_{2}^{2}}\] |
B. | \[{{K}_{1}}.{{K}_{2}}\] |
C. | \[\frac{{{K}_{1}}}{{{K}_{2}}}\] |
D. | \[\frac{{{K}_{2}}}{{{K}_{1}}}\] |
Answer» E. | |
745. |
Values of dissociation constant, \[{{K}_{a}}\] are given as follows:Acid\[{{K}_{a}}\]HCN\[6.2\times {{10}^{-10}}\]HF\[7.2\times {{10}^{-4}}\]HNCX\[4.0\times {{10}^{-4}}\]Correct order of increasing base strength of the base \[C{{N}^{-}}\text{, }{{F}^{-}}\]and \[NO_{2}^{-}\] will be: |
A. | \[{{F}^{-}}<C{{N}^{-}}<NO_{_{2}}^{-}\] |
B. | \[NO_{_{2}}^{-}<C{{N}^{-}}<{{F}^{-}}\] |
C. | \[{{F}^{-}}<NO_{2}^{-}<C{{N}^{-}}\] |
D. | \[NO_{2}^{-}<{{F}^{-}}<C{{N}^{-}}\] |
Answer» D. \[NO_{2}^{-}<{{F}^{-}}<C{{N}^{-}}\] | |
746. |
When \[C{{O}_{2}}\] dissolves in water, the following equilibrium is established \[C{{O}_{2}}+2{{H}_{2}}O\rightleftharpoons {{H}_{3}}{{O}^{+}}+HC{{O}_{3}}^{-}\] for which the equilibrium constant is \[3.8\times {{10}^{-7}}\] and pH = 6.0. The ratio of \[\left[ HC{{O}_{3}}^{-} \right]\] to \[[C{{O}_{2}}]\] would be |
A. | \[3.8\times {{10}^{-13}}\] |
B. | \[3.8\times {{10}^{-1}}\] |
C. | 6.0 |
D. | 13.4 |
Answer» C. 6.0 | |
747. |
What is the decreasing order of basic strengths of \[O{{H}^{-}},N{{H}_{2}}^{-},H-C\equiv {{C}^{-}}\] and \[C{{H}_{3}}-C{{H}_{2}}^{-}\] |
A. | \[C{{H}_{3}}-CH_{2}^{-}>NH_{2}^{-}>H-C\equiv {{C}^{-}}>O{{H}^{-}}\] |
B. | \[H-C\equiv {{C}^{-}}>C{{H}_{3}}C{{H}_{2}}^{-}>NH_{2}^{-}>O{{H}^{-}}\] |
C. | \[O{{H}^{-}}>N{{H}_{2}}^{-}>H-C\equiv {{C}^{-}}>C{{H}_{3}}-CH_{2}^{-}\] |
D. | \[N{{H}_{2}}^{-}>H-C\equiv {{C}^{-}}>O{{H}^{-}}>C{{H}_{3}}-CH_{2}^{-}\] |
Answer» B. \[H-C\equiv {{C}^{-}}>C{{H}_{3}}C{{H}_{2}}^{-}>NH_{2}^{-}>O{{H}^{-}}\] | |
748. |
The increase of pressure on ice \[\rightleftharpoons \] water system at constant temperature will lead to |
A. | a decrease in the entropy of the system |
B. | an increase in the Gibb's energy of the system |
C. | no effect on the equilibrium |
D. | a shift of the equilibrium in the forward direction |
Answer» E. | |
749. |
One mole of \[{{O}_{2}}(g)\] and two moles of \[S{{O}_{2}}(g)\] were heated in a closed vessel of one-litre capacity at 1098 K. At equilibrium 1.6 moles of \[S{{O}_{3}}\left( g \right)\] were found. The equilibrium constant \[{{K}_{c}}\] of the reaction would be |
A. | 30 |
B. | 40 |
C. | 80 |
D. | 60 |
Answer» D. 60 | |
750. |
At a certain temperature the dissociation constants of formic acid and acetic acid are \[1.8\times {{10}^{-4}}\] and \[1.8\times {{10}^{-6}}\] respectively. The concentration of acetic acid solution in which the hydrogen ion has the same concentration as in 0.001 M formic acid solution is equal to |
A. | 0.001 M |
B. | 0.01 M |
C. | 0.1M |
D. | 0.0001 M |
Answer» C. 0.1M | |