MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 6301. |
In the electrolytic cell, flow of electrons is from [IIT Screening 2003] |
| A. | Cathode to anode in solution |
| B. | Cathode to anode through external supply |
| C. | Cathode to anode through internal supply |
| D. | Anode to cathode through internal supply |
| Answer» E. | |
| 6302. |
When the sample of copper with zinc impurity is to be purified by electrolysis, the appropriate electrodes are [AIEEE 2002] |
| A. | Cathode Anode Pure zinc Pure copper |
| B. | Impure sample Pure copper |
| C. | Impure zinc Impure sample |
| D. | Pure copper Impure sample |
| Answer» E. | |
| 6303. |
During the electrolysis of an electrolyte, the number of ions produced, is directly proportional to the [AFMC 2002] |
| A. | Time consumed |
| B. | Electro chemical equivalent of electrolysis |
| C. | Quantity of electricity passed |
| D. | Mass of electrons |
| Answer» D. Mass of electrons | |
| 6304. |
Which of the following compounds will not undergo decomposition on passing electricity through aqueous solution [MP PET 2001] |
| A. | Sugar |
| B. | Sodium Chloride |
| C. | Sodium Bromide |
| D. | Sodium Acetate |
| Answer» B. Sodium Chloride | |
| 6305. |
Electrolysis involves oxidation and reduction respectively at [CPMT 1973; AMU 1983; NCERT 1983, 84; MH CET 2001] |
| A. | Anode and cathode |
| B. | Cathode and anode |
| C. | At both the electrodes |
| D. | None of the above |
| Answer» B. Cathode and anode | |
| 6306. |
Which of the following will not conduct electricity in aqueous solution [AMU 1982, 83] |
| A. | Copper sulphate |
| B. | Sugar |
| C. | Common salt |
| D. | None of these |
| Answer» C. Common salt | |
| 6307. |
What is wrongly stated about electrochemical series [DCE 1999] |
| A. | It is the representation of element in order of increasing or decreasing standard electrode reductional potential |
| B. | It does not compare the relative reactivity of metals |
| C. | It compares relative strengths of oxidising agents |
| D. | \[{{H}_{2}}\] is centrally placed element |
| Answer» C. It compares relative strengths of oxidising agents | |
| 6308. |
Electrode potentials of five elements \[A,\,B,\,C,\,D\] and \[E\] are respectively ? 1.36 , ? 0.32, 0, ? 1.26 and ?0.42. The reactivity order of these elements are in the order of [MP PMT 1995] |
| A. | A, D, E, B and C |
| B. | C, B, E, D and A |
| C. | B, D, E, A and C |
| D. | C, A, E, D and B |
| Answer» B. C, B, E, D and A | |
| 6309. |
\[{{E}^{o}}\] of a cell \[aA+bB\to cC+dD\] is [CPMT 1997] |
| A. | \[-\frac{RT}{nF}\log \frac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\] |
| B. | \[-RT\,\log \frac{{{[a]}^{A}}{{[b]}^{B}}}{{{[a]}^{C}}{{[d]}^{D}}}\] |
| C. | \[-\frac{RT}{nF}\log \frac{{{[C]}^{c}}{{[d]}^{D}}}{{{[A]}^{a}}{{[B]}^{b}}}\] |
| D. | \[-\frac{RT}{nF}\log \frac{{{[C]}^{c}}{{[d]}^{D}}}{{{[a]}^{A}}{{[B]}^{b}}}\] |
| Answer» B. \[-RT\,\log \frac{{{[a]}^{A}}{{[b]}^{B}}}{{{[a]}^{C}}{{[d]}^{D}}}\] | |
| 6310. |
\[C{{u}^{+}}\] ion is not stable in aqueous solution because of disproportionation reaction. \[{{E}^{o}}\] value for disproportionation of \[C{{u}^{+}}\] is (Given \[E_{C{{u}^{2+}}/C{{u}^{+}}}^{o}=0.15\], \[E_{C{{u}^{2+}}/Cu}^{o}=0.34V\]) [IIT 1995] |
| A. | ? 0.49 V |
| B. | 0.49 V |
| C. | ? 0.38 V |
| D. | 0.38 V |
| Answer» E. | |
| 6311. |
An electrochemical cell is set up as follows \[Pt({{H}_{2}},\,1\,atm)/0.1\,M\,HCl\] || 0.1 M acetic acid /( \[{{H}_{2}},\,1\,atm\]) Pt E.M.F. of this cell will not be zero because [CBSE PMT 1995] |
| A. | The \[pH\] of 0.1 M HCl and 0.1 M acetic acid is not the same |
| B. | Acids used in two compartments are different |
| C. | E.M.F. of a cell depends on the molarities of acids used |
| D. | The temperature is constant |
| Answer» B. Acids used in two compartments are different | |
| 6312. |
Which of the following has been universally accepted as a reference electrode at all temperatures and has been assigned a value of zero volt [AIIMS 1998] |
| A. | Graphite electrode |
| B. | Copper electrode |
| C. | Platinum electrode |
| D. | Standard hydrogen electrode |
| Answer» E. | |
| 6313. |
The element which can displace three other halogens from their compound is [EAMCET 1998] |
| A. | \[Cl\] |
| B. | \[F\] |
| C. | \[Br\] |
| D. | \[I\] |
| Answer» C. \[Br\] | |
| 6314. |
Beryllium is placed above magnesium in the second group. Beryllium dust, therefore when added to \[MgC{{l}_{2}}\]solution will [CPMT 1977] |
| A. | Have no effect |
| B. | Precipitate \[Mg\] metal |
| C. | Precipitate \[MgO\] |
| D. | Lead to dissolution of \[Be\]metal |
| Answer» B. Precipitate \[Mg\] metal | |
| 6315. |
Which of the following has highest electrode potential [Pb. PMT 2000] |
| A. | \[Li\] |
| B. | \[Cu\] |
| C. | \[Au\] |
| D. | \[Al\] |
| Answer» D. \[Al\] | |
| 6316. |
Arrange the following in the order of their decreasing electrode potential Mg, K, Ba, Ca [JIPMER 2002] |
| A. | \[K,Ba,Ca,Mg\] |
| B. | \[Ca,Mg,K,Ba\] |
| C. | \[Ba,Ca,K,Mg\] |
| D. | \[Mg,Ca,Ba,K\] |
| Answer» B. \[Ca,Mg,K,Ba\] | |
| 6317. |
EMF of a cell in terms of reduction potential of its left and right electrodes is [AIEEE 2002] |
| A. | \[E={{E}_{left}}-{{E}_{right}}\] |
| B. | \[E={{E}_{left}}+{{E}_{right}}\] |
| C. | \[E={{E}_{right}}-{{E}_{left}}\] |
| D. | \[E=-({{E}_{right}}+{{E}_{left}})\] |
| Answer» D. \[E=-({{E}_{right}}+{{E}_{left}})\] | |
| 6318. |
Will \[F{{e}_{(s)}}\]be oxidised to \[F{{e}^{2+}}\] by the reaction with 1 M \[HCl\]\[({{E}^{o}}\] for \[Fe/F{{e}^{2+}}\]= + 0.44 V) [Pb. PMT 2000] |
| A. | Yes |
| B. | No |
| C. | May be |
| D. | Can?t say |
| Answer» B. No | |
| 6319. |
The mass of the proton is 1840 times that of electron, its potential difference is V. The kinetic energy of proton is [DCE 2001] |
| A. | 1840 KeV |
| B. | 1 KeV |
| C. | \[\frac{1}{1840}\] KeV |
| D. | 920 KeV |
| Answer» C. \[\frac{1}{1840}\] KeV | |
| 6320. |
What will be the emf for the given cell \[Pt|{{H}_{2}}({{P}_{1}})|{{H}^{+}}_{(aq)}||{{H}_{2}}({{P}_{2}})|Pt\] [AIEEE 2002] |
| A. | \[\frac{RT}{f}\log \frac{{{P}_{1}}}{{{P}_{2}}}\] |
| B. | \[\frac{RT}{2f}\log \frac{{{P}_{1}}}{{{P}_{2}}}\] |
| C. | \[\frac{RT}{f}\log \frac{{{P}_{2}}}{{{P}_{1}}}\] |
| D. | None of these |
| Answer» C. \[\frac{RT}{f}\log \frac{{{P}_{2}}}{{{P}_{1}}}\] | |
| 6321. |
Which will increase the voltage of the cell \[S{{n}_{(s)}}+2A{{g}^{+}}_{(aq)}\to S{{n}^{2+}}_{(aq)}+2A{{g}_{(s)}}\] [DPMT 2001] |
| A. | Increase in the concentration of \[A{{g}^{+}}\]ions |
| B. | Increase in the concentration of \[S{{n}^{2+}}\]ions |
| C. | Increase in size of the silver rod |
| D. | None of these |
| Answer» B. Increase in the concentration of \[S{{n}^{2+}}\]ions | |
| 6322. |
Which of the following condition will increase the voltage of the cell, represented by the equation \[C{{u}_{(s)}}+2A{{g}^{+}}_{(aq)}\to C{{u}^{2+}}_{(aq)}+2A{{g}_{(s)}}\] [CBSE PMT 2001] |
| A. | Increase in the concentration of \[A{{g}^{+}}\]ion |
| B. | Increase in the concentration of \[C{{u}^{+}}\] ion |
| C. | Increase in the dimension of silver electrode |
| D. | Increase in the dimension of copper electrode |
| Answer» B. Increase in the concentration of \[C{{u}^{+}}\] ion | |
| 6323. |
The standard oxidation potential of zinc and silver in water at \[298\,\,K\]are \[Zn\,\,(s)\,\,\to \,\,Z{{n}^{2+}}+2{{e}^{-}}\,;\,E=0.76\,V\] \[Ag\,\,(s)\,\,\to \,A{{g}^{2+}}+2{{e}^{-}}\,;\,E=-0.80\,V\] Which of the following reactions actually take place [NCERT 1983, 84; KCET 2003] |
| A. | \[Zn(s)+2A{{g}^{+}}(aq)\,\to \,Z{{n}^{++}}(aq)+2Ag(s)\] |
| B. | \[Z{{n}^{++}}(aq)+2Ag(s)\,\to \,2A{{g}^{+}}(aq)+Zn(s)\] |
| C. | \[Zn(s)+Ag(s)\,\to \,Z{{n}^{++}}(aq)+A{{g}^{+}}(aq)\] |
| D. | \[Z{{n}^{++}}(aq)+A{{g}^{+}}(aq)\,\to \,Zn(s)+Ag(s)\] |
| Answer» B. \[Z{{n}^{++}}(aq)+2Ag(s)\,\to \,2A{{g}^{+}}(aq)+Zn(s)\] | |
| 6324. |
\[KMn{{O}_{4}}\] acts as an oxidising agent in the neutral medium and gets reduced to \[Mn{{O}_{2}}\]. The equivalent weight of \[KMn{{O}_{4}}\] in neutral medium [AMU 2001] |
| A. | mol. wt/2 |
| B. | mol.wt/3 |
| C. | mol. wt/4 |
| D. | mol .wt/7 |
| Answer» C. mol. wt/4 | |
| 6325. |
The standard potential at \[{{25}^{o}}C\] for the following half reactions are given against them \[Z{{n}^{2+}}+2e\to Zn,{{E}^{o}}=-0.762V\]\[M{{g}^{2+}}+2e\to Mg,{{E}^{o}}=-2.37V\] When zinc dust is added to the solution of \[MgC{{l}_{2}}\] [UPSEAT 2001] |
| A. | \[ZnC{{l}_{2}}\]is formed |
| B. | Zinc dissolves in the solution |
| C. | No reaction takes place |
| D. | \[Mg\]is precipitated |
| Answer» D. \[Mg\]is precipitated | |
| 6326. |
For the electrochemical cell, \[M|{{M}^{+}}||{{X}^{-}}|X,\]\[{{E}^{o}}({{M}^{+}}/M)\] = 0.44 V and \[{{E}^{o}}(X/{{X}^{-}})\]= 0.33 V. From this data one can deduce that [IIT-JEE (Screening) 2000] |
| A. | \[M\,+\,X\,\to {{M}^{+}}+{{X}^{-}}\] is the spontaneous reaction |
| B. | \[{{M}^{+}}+{{X}^{-}}\to M+X\] is the spontaneous reaction |
| C. | \[{{E}_{cell}}\]= 0.77 V |
| D. | \[{{E}_{cell}}\]= ? 0.77 V |
| Answer» C. \[{{E}_{cell}}\]= 0.77 V | |
| 6327. |
Standard reduction electrode potentials of three metals A, B and C are respectively + 0.5V, ? 3.0V and ? 1.2 V. The reducing powers of these metals are [IIT 1998; AIEEE 2003] |
| A. | B > C > A |
| B. | A > B > C |
| C. | C > B > A |
| D. | A > C > B |
| Answer» B. A > B > C | |
| 6328. |
\[Z{{n}^{2+}}+2{{e}^{-}}\to Zn(s);{{E}^{o}}=-\,0.76\], \[F{{e}^{3+}}+{{e}^{-}}\to F{{e}^{2+}};{{E}^{o}}=-\,0.77\],\[C{{r}^{3+}}+3{{e}^{-}}\to Cr;{{E}^{o}}=-\,0.79\], \[{{H}^{+}}+2{{e}^{-}}\to 1/2{{H}_{2}}\,;\,{{E}^{o}}=0.00\] Strongest reducing agent is [BHU 2003] |
| A. | \[F{{e}^{2+}}\] |
| B. | \[Zn\] |
| C. | \[Cr\] |
| D. | \[{{H}_{2}}\] |
| Answer» D. \[{{H}_{2}}\] | |
| 6329. |
The standard electrode potential of the half cells are given below \[Z{{n}^{2+}}+2{{e}^{-}}\to Zn;E=-7.62\,\,V,\]\[F{{e}^{2+}}+2{{e}^{-}}\to Fe;E=-7.81\,\,V\] The emf of the cell \[F{{e}^{2+}}+Zn\to Z{{n}^{2+}}+Fe\] is [CPMT 2003] |
| A. | 1.54 V |
| B. | ? 1.54 V |
| C. | ? 0.19 V |
| D. | + 0.19 V |
| Answer» D. + 0.19 V | |
| 6330. |
Which of the following is displaced by \[Fe\] [Roorkee 1995] |
| A. | \[Ag\] |
| B. | \[Hg\] |
| C. | \[Zn\] |
| D. | \[Na\] |
| Answer» B. \[Hg\] | |
| 6331. |
What is \[{{E}^{o}}\] for electrode represented by \[Pt,\,{{O}_{2}}(1\,atm)\,/\,2{{H}^{+}}(\operatorname{Im})\] [JIPMER 1997] |
| A. | Unpredictable |
| B. | Zero |
| C. | 0.018 V |
| D. | 0.118 V |
| Answer» C. 0.018 V | |
| 6332. |
The standard reduction electrode potentials of four elements are \[A=-0.250\,\,V\] \[B=-0.136\,V\] \[C=-0.126\,\,V\] \[D=-0.402\,\,V\] The element that displaces A from its compounds is |
| A. | B |
| B. | C |
| C. | D |
| D. | None of these |
| Answer» C. D | |
| 6333. |
The \[{{E}^{o}}\] for half cells \[Fe/F{{e}^{2+}}\] and \[Cu/C{{u}^{2+}}\] are ? 0.44 V and + 0.32 V respectively. Then [MP PMT 2003] |
| A. | \[C{{u}^{2+}}\]oxidises \[Fe\] |
| B. | \[C{{u}^{2+}}\]oxidises \[F{{e}^{2+}}\] |
| C. | \[Cu\] oxidises \[F{{e}^{2+}}\] |
| D. | \[Cu\] reduces \[F{{e}^{2+}}\] |
| Answer» B. \[C{{u}^{2+}}\]oxidises \[F{{e}^{2+}}\] | |
| 6334. |
The emf of a Daniel cell at 298K is \[{{E}_{1}}\] \[Zn|\underset{(0.01\,\,M)}{\mathop{ZnS{{O}_{4}}}}\,||\underset{(1.0\,\,M)}{\mathop{CuS{{O}_{4}}}}\,|Cu\] when the concentration of \[ZnS{{O}_{4}}\] is 1.0 M and that of \[CuS{{O}_{4}}\] is 0.01 M, the emf changed to \[{{E}_{2}}\]. What is the relationship between \[{{E}_{1}}\] and \[{{E}_{2}}\] [CBSE PMT 2003] |
| A. | \[{{E}_{2}}=0\ne {{E}_{1}}\] |
| B. | \[{{E}_{1}}>{{E}_{2}}\] |
| C. | \[{{E}_{1}}<{{E}_{2}}\] |
| D. | \[{{E}_{1}}={{E}_{2}}\] |
| Answer» C. \[{{E}_{1}}<{{E}_{2}}\] | |
| 6335. |
For the redox reaction \[Zn(s)+C{{u}^{2+}}(0.1M)\to Z{{n}^{2+}}(1M)+Cu(s)\] taking place in a cell, \[E_{cell}^{o}\] is 1.10 volt. \[{{E}_{cell}}\] for the cell will be \[\left( 2.303\frac{RT}{F}=0.0591 \right)\] [AIEEE 2003] |
| A. | 2.14 volt |
| B. | 1.80 volt |
| C. | 1.07 volt |
| D. | 0.82 volt |
| Answer» D. 0.82 volt | |
| 6336. |
The e.m.f. of the cell in which the following reaction \[Zn(s)+N{{i}^{2+}}(a=1.0)\]⇌ \[Z{{n}^{2+}}(a=10)+Ni(s)\] occurs, is found to be \[0.5105\,V\] at \[298K\]. The standard e.m.f. of the cell is [Roorkee Qualifying 1998] |
| A. | 0.5400 |
| B. | 0.4810 V |
| C. | 0.5696 V |
| D. | ? 0.5105 V |
| Answer» C. 0.5696 V | |
| 6337. |
For the cell reaction \[C{{u}^{2+}}({{C}_{1}}aq)+Zn(s)=Z{{n}^{2+}}({{C}_{2}}aq)+Cu(s)\] of an electrochemical cell, the change in free energy at a given temperature is a function of [CBSE PMT 1998] |
| A. | ln \[({{C}_{1}})\] |
| B. | ln \[({{C}_{2}})\] |
| C. | ln \[({{C}_{1}}+{{C}_{2}})\] |
| D. | ln \[({{C}_{2}}/{{C}_{1}})\] |
| Answer» E. | |
| 6338. |
Which of the following displaces \[B{{r}_{2}}\] from an aqueous solution containing bromide ions [CBSE PMT 1994; JIPMER (Med.) 2002] |
| A. | \[C{{l}_{2}}\] |
| B. | \[C{{l}^{-}}\] |
| C. | \[{{I}_{2}}\] |
| D. | \[I_{3}^{-}\] |
| Answer» B. \[C{{l}^{-}}\] | |
| 6339. |
Standard reduction potentials at \[{{25}^{o}}C\] of \[L{{i}^{+}}|Li,\,B{{a}^{2+}}|\,Ba,\,N{{a}^{+}}|\,Na\] and \[M{{g}^{2+}}|Mg\] are \[-3.05,\,-2.90,\,-2.71\] and \[-2.37\] volt respectively. Which one of the following is the strongest oxidising agent [CBSE PMT 1994; JIPMER 2002] |
| A. | \[N{{a}^{+}}\] |
| B. | \[L{{i}^{+}}\] |
| C. | \[B{{a}^{2+}}\] |
| D. | \[M{{g}^{2+}}\] |
| Answer» E. | |
| 6340. |
\[{{E}^{o}}\] for the cell \[Zn|Z{{n}^{2+}}(aq)||C{{u}^{2+}}(aq)|Cu\] is \[1.10\,V\] at \[{{25}^{o}}C\], the equilibrium constant for the reaction \[Zn+C{{u}^{2+}}(aq)\]⇌\[Cu+Z{{n}^{2+}}(aq)\] is of the order of [CBSE PMT 1997] |
| A. | \[{{10}^{-28}}\] |
| B. | \[{{10}^{-37}}\] |
| C. | \[{{10}^{+18}}\] |
| D. | \[{{10}^{+17}}\] |
| Answer» C. \[{{10}^{+18}}\] | |
| 6341. |
One of the following is false for \[Hg\] [BHU 1998] |
| A. | It can evolve hydrogen from \[{{H}_{2}}S\] |
| B. | It is a metal |
| C. | It has high specific heat |
| D. | It is less reactive than hydrogen |
| Answer» B. It is a metal | |
| 6342. |
A solution containing one mole per litre of each \[Cu{{(N{{O}_{3}})}_{2}},\,\,AgN{{O}_{3}},\,\,H{{g}_{2}}{{(N{{O}_{3}})}_{2}}\] and \[Mg{{(N{{O}_{3}})}_{2}},\] is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts (reduction potentials) are \[Ag/A{{g}^{+}}=+0.80,\,\,2Hg/Hg_{2}^{2+}=+0.79,\,\,Cu/C{{u}^{2+}}=+0.34,\]\[Mg/M{{g}^{2+}}=-2.37\]with increasing voltage, the sequence of deposition of metals on the cathode will be [IIT 1984; AMU 1999; Kerala PMT 2004] |
| A. | \[Ag,\,\,Hg,\,\,Cu,\,\,Mg\] |
| B. | \[Mg,\,\,Cu,\,\,Hg,\,\,Ag\] |
| C. | \[Ag,\,\,Hg,\,\,Cu\] |
| D. | \[Cu,\,\,Hg,\,\,Ag\] |
| Answer» D. \[Cu,\,\,Hg,\,\,Ag\] | |
| 6343. |
If the reduction potential is more, then [CPMT 1996] |
| A. | It is easily oxidised |
| B. | It is easily reduced |
| C. | It acts as oxidising agent |
| D. | It has redox nature |
| Answer» D. It has redox nature | |
| 6344. |
The standard electrode potential \[({{E}^{o}})\] for \[OC{{l}^{-}}/C{{l}^{-}}\] and \[C{{l}^{-}}/\frac{1}{2}C{{l}_{2}}\] respectively are \[0.94\,V\] and \[-1.36\,V\]. The \[{{E}^{o}}\] value for \[OC{{l}^{-}}/\frac{1}{2}C{{l}_{2}}\] will be [KCET 1996] |
| A. | \[-0.42\,V\] |
| B. | \[-\,2.20\,V\] |
| C. | \[0.52\,V\] |
| D. | \[1.04\,V\] |
| Answer» B. \[-\,2.20\,V\] | |
| 6345. |
Electrode potential data are given below : \[F{{e}^{3+}}(aq)+{{e}^{-}}\to F{{e}^{-1}}(aq);\,{{E}^{o}}=+0.77V\] \[A{{l}^{3+}}(aq)+3{{e}^{-}}\to Al(s);\,{{E}^{o}}=-1.66V\] \[B{{r}_{2}}(aq)+2{{e}^{-}}\to 2B{{r}^{-}}(aq);\,{{E}^{o}}=+1.08\,V\] Based on the data given above, reducing power of \[F{{e}^{2+}},\,Al\] and \[B{{r}^{-}}\] will increase in the order [Pb. PMT 1998] |
| A. | \[B{{r}^{-}}<F{{e}^{2+}}<Al\] |
| B. | \[F{{e}^{2+}}<Al<B{{r}^{-}}\] |
| C. | \[Al<B{{r}^{-}}<F{{e}^{2+}}\] |
| D. | \[Al<F{{e}^{2+}}<B{{r}^{-}}\] |
| Answer» B. \[F{{e}^{2+}}<Al<B{{r}^{-}}\] | |
| 6346. |
The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent I = ? 3.04 V, II = ? 1.90 V, III = 0 V, IV = 1.90 V [CPMT 1999] |
| A. | I |
| B. | II |
| C. | III |
| D. | IV |
| Answer» B. II | |
| 6347. |
Calculate standard free energy change for the reaction \[\frac{1}{2}Cu(s)+\frac{1}{2}C{{l}_{2}}(g)\]⇌\[\frac{1}{2}C{{u}^{2+}}+C{{l}^{-}}\] taking place at \[{{25}^{o}}C\] in a cell whose standard e.m.f. is 1.02 volts [MP PMT 1997] |
| A. | ? 98430 J |
| B. | 98430 J |
| C. | 96500 J |
| D. | ? 49215 J |
| Answer» B. 98430 J | |
| 6348. |
In which cell the free energy of a chemical reaction is directly converted into electricity ? [MP PET/PMT 1998] |
| A. | Leclanche cell |
| B. | Concentration cell |
| C. | Fuel cell |
| D. | Lead storage battery |
| Answer» D. Lead storage battery | |
| 6349. |
Which of the following is correct expression for electrode potential of a cell [MP PMT 1997] |
| A. | \[E={{E}^{o}}-\frac{RT}{nF}\,\ln \,\frac{\text{ }\!\![\!\!\text{ product }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ reactant }\!\!]\!\!\text{ }}\] |
| B. | \[E={{E}^{o}}+\frac{RT}{F}\,\ln \,\frac{\text{ }\!\![\!\!\text{ product }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ reactant }\!\!]\!\!\text{ }}\] |
| C. | \[E={{E}^{o}}-\frac{RT}{nF}\,\ln \,\frac{\text{ }\!\![\!\!\text{ reactant }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ product }\!\!]\!\!\text{ }}\] |
| D. | \[E=-\frac{RT}{F}\ln \,\frac{\text{ }\!\![\!\!\text{ product }\!\!]\!\!\text{ }}{[\text{reactant }\!\!]\!\!\text{ }}\] |
| Answer» B. \[E={{E}^{o}}+\frac{RT}{F}\,\ln \,\frac{\text{ }\!\![\!\!\text{ product }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ reactant }\!\!]\!\!\text{ }}\] | |
| 6350. |
Amongst the following electrodes the one with zero electrode potential is [MP PMT 1997] |
| A. | Calomel electrode |
| B. | Standard hydrogen electrode |
| C. | Glass electrode |
| D. | Gas electrode |
| Answer» C. Glass electrode | |