MCQOPTIONS
Saved Bookmarks
This section includes 11242 Mcqs, each offering curated multiple-choice questions to sharpen your Joint Entrance Exam - Main (JEE Main) knowledge and support exam preparation. Choose a topic below to get started.
| 6401. |
The e.m.f. of the cell \[Ag|A{{g}^{+}}(0.1M)||A{{g}^{+}}(1M)|Ag\] at 298 K is [DCE 2003] |
| A. | 0.0059 V |
| B. | 0.059 V |
| C. | 5.9 V |
| D. | 0.59 V |
| Answer» C. 5.9 V | |
| 6402. |
If the \[\Delta G\] of a cell reaction \[AgCl+{{e}^{-}}\to Ag+C{{l}^{-}}\] is \[-21.20\ KJ\]; the standard e.m.f., of cell is [MP PMT 2004] |
| A. | 0.229 V |
| B. | 0.220 V |
| C. | ? 0.220 V |
| D. | ? 0.110 V |
| Answer» C. ? 0.220 V | |
| 6403. |
For the cell reaction, \[2C{{e}^{4+}}+Co\to 2C{{e}^{3+}}+C{{o}^{2+}}\] \[E{{{}^\circ }_{cell}}\]is 1.89 V. If \[E{{{}^\circ }_{C{{e}^{4+}}/C{{e}^{3+}}}}\] [Pb.CET 2000] |
| A. | ? 1.64 V |
| B. | + 1.64 V |
| C. | ? 2.08 V |
| D. | + 2.17 V |
| Answer» C. ? 2.08 V | |
| 6404. |
A galvanic cell with electrode potential of \['A'=+2.23\ V\]and \['B'=-1.43\ V\]. The value of \[E{{{}^\circ }_{cell}}\] is [Pb.CET 2003] |
| A. | 3.66 V |
| B. | 0.80 V |
| C. | ? 0.80 V |
| D. | ? 3.66 V |
| Answer» B. 0.80 V | |
| 6405. |
Standard electrode potential of cell \[{{H}_{2}}|{{H}^{+}}||A{{g}^{+}}|Ag\] is [AIEEE 2004] |
| A. | 0.8 V |
| B. | ? 0.8 V |
| C. | ? 1.2 V |
| D. | 1.2 V |
| Answer» B. ? 0.8 V | |
| 6406. |
The correct representation of Nernst's equation is |
| A. | \[{{E}_{{{M}^{n+}}/M}}={{E}^{o}}_{{{M}^{n+}}/M}+\frac{0.0591}{n}\log \,({{M}^{n+}})\] |
| B. | \[{{E}_{{{M}^{n+}}/M}}={{E}^{o}}_{{{M}^{n+}}/M}-\frac{0.0591}{n}\log \,({{M}^{n+}})\] |
| C. | \[{{E}_{{{M}^{n+}}/M}}={{E}^{o}}_{{{M}^{n+}}/M}+\frac{n}{0.0591}\log \,({{M}^{n+}})\] |
| D. | None of the above |
| Answer» B. \[{{E}_{{{M}^{n+}}/M}}={{E}^{o}}_{{{M}^{n+}}/M}-\frac{0.0591}{n}\log \,({{M}^{n+}})\] | |
| 6407. |
For the electrochemical cell, \[M|{{M}^{+}}||{{X}^{-}}|X,\] \[E{}^\circ ({{M}^{+}}|M)\]\[=0.44\ V\]\[E{}^\circ (X|{{X}^{-}})=0.33\ V\]From this data, one can deduce that [Pb.CET 2004] |
| A. | \[E{{{}^\circ }_{cell}}=-0.77\,V\] |
| B. | \[{{M}^{+}}+{{X}^{-}}\to M+X\] is the spontaneous reaction |
| C. | \[M+X\to {{M}^{+}}+{{X}^{-}}\]is the spontaneous reaction |
| D. | \[E{{{}^\circ }_{cell}}=.77\ V\] |
| Answer» C. \[M+X\to {{M}^{+}}+{{X}^{-}}\]is the spontaneous reaction | |
| 6408. |
The metal that forms a self protecting film of oxide to prevent corrosion, is [BHU 1999] |
| A. | \[Cu\] |
| B. | \[Al\] |
| C. | \[Na\] |
| D. | \[Au\] |
| Answer» C. \[Na\] | |
| 6409. |
In a cell that utilises the reaction \[Z{{n}_{(s)}}+2{{H}^{+}}(aq)\to \] \[Z{{n}^{2+}}(aq)+{{H}_{ 2(g)}}\]addition of \[{{H}_{2}}S{{O}_{4}}\] to cathode compartment, will [AIEEE 2004] |
| A. | Increase the E and shift equilibrium to the right |
| B. | Lower the E and shift equilibrium to the right |
| C. | Lower the E and shift equilibrium to the left |
| D. | Increase the E and shift equilibrium to the left |
| Answer» B. Lower the E and shift equilibrium to the right | |
| 6410. |
Copper cannot replace?.. from solution [DPMT 2002] |
| A. | \[Fe\] |
| B. | \[Au\] |
| C. | \[Hg\] |
| D. | \[Ag\] |
| Answer» B. \[Au\] | |
| 6411. |
Which of the following statements is true for fuel cells [KCET (Med.) 1999; AFMC 2000] |
| A. | They are more efficient |
| B. | They are free from pollution |
| C. | They run till reactants are active |
| D. | All of these |
| Answer» E. | |
| 6412. |
What is the potential of a half-cell consisting of zinc electrode in 0.01m \[ZnS{{O}_{4}}\] solution at \[{{258}^{o}}C\] \[({{E}^{o}}=0.763\,V)\] [AIIMS 2000; BHU 2000] |
| A. | 0.8221 V |
| B. | 8.221 V |
| C. | 0.5282 V |
| D. | 9.232 V |
| Answer» B. 8.221 V | |
| 6413. |
The emf of a galvanic cell, with electrode potentials of silver = +0.80V and that of copper = + 0.34 V, is [AIIMS 1999] |
| A. | ? 1.1 V |
| B. | + 1.1 V |
| C. | + 0.46 V |
| D. | + 0.76 V |
| Answer» D. + 0.76 V | |
| 6414. |
The hydrogen electrode is dipped in a solution of \[pH=3\] at \[{{25}^{o}}C\]. The potential of the cell would be (the value of \[2.303RT/F\] is 0.059 V) [KCET 1993,2005] |
| A. | 0.177 V |
| B. | ? 0.177 V |
| C. | 0.087 V |
| D. | 0.059 V |
| Answer» C. 0.087 V | |
| 6415. |
The name of equation showing relation between electrode potential \[(E)\]standard electrode potential \[({{E}^{o}})\] and concentration of ions in solution is |
| A. | Kohlrausch's equation |
| B. | Nernst's equation |
| C. | Ohm's equation |
| D. | Faraday's equation |
| Answer» C. Ohm's equation | |
| 6416. |
Which one is strongest electrolyte in the following [CPMT 1990] |
| A. | \[NaCl\] |
| B. | \[C{{H}_{3}}COOH\] |
| C. | \[N{{H}_{4}}OH\] |
| D. | \[{{C}_{6}}{{H}_{12}}{{O}_{6}}\] |
| Answer» B. \[C{{H}_{3}}COOH\] | |
| 6417. |
An example for a strong electrolyte is [KCET 2002] |
| A. | Urea |
| B. | Ammonium hydroxide |
| C. | Sugar |
| D. | Sodium acetate |
| Answer» E. | |
| 6418. |
A monoprotic acid in 1.00 M solution is 0.01% ionised. The dissociation constant of this acid is [BVP 2003] |
| A. | \[1\times {{10}^{-8}}\] |
| B. | \[1\times {{10}^{-4}}\] |
| C. | \[1\times {{10}^{-6}}\] |
| D. | \[{{10}^{-5}}\] |
| Answer» B. \[1\times {{10}^{-4}}\] | |
| 6419. |
An electrolyte [MP PMT/PET 1988; CPMT 1974] |
| A. | Gives complex ions in solution |
| B. | Dissolves in water to give ions |
| C. | Is ionized in the solid state |
| D. | Generates ions on passing electric current |
| Answer» C. Is ionized in the solid state | |
| 6420. |
Electrolytes when dissolved in water dissociate into their constituent ions. The degree of dissociation of an electrolyte increases with [CPMT 1974] |
| A. | Increasing concentration of the electrolyte |
| B. | Decreasing concentration of the electrolyte |
| C. | Decreasing temperature |
| D. | Presence of a substance yielding a common ion |
| Answer» C. Decreasing temperature | |
| 6421. |
Concentration \[C{{N}^{-}}\] in \[0.1\,M\,HCN\] is \[[{{K}_{a}}=4\times {{10}^{-10}}]\] [RPET 2000] |
| A. | \[2.5\times {{10}^{-6}}M\] |
| B. | \[4.5\times {{10}^{-6}}M\] |
| C. | \[6.3\times {{10}^{-6}}M\] |
| D. | \[9.2\times {{10}^{-6}}M\] |
| Answer» D. \[9.2\times {{10}^{-6}}M\] | |
| 6422. |
Ionisation depends upon [CPMT 2004] |
| A. | Pressure |
| B. | Volume |
| C. | Dilution |
| D. | None of these |
| Answer» D. None of these | |
| 6423. |
The colour of an electrolyte solution depends on [DPMT 1985] |
| A. | The nature of the anion |
| B. | The nature of the cation |
| C. | The nature of both the ions |
| D. | The nature of the solvent |
| Answer» D. The nature of the solvent | |
| 6424. |
The best conductor of electricity is a 1.0 M solution of [NCERT 1973] |
| A. | Boric acid |
| B. | Acetic acid |
| C. | Sulphuric acid |
| D. | Phosphoric acid |
| Answer» D. Phosphoric acid | |
| 6425. |
0.2 molar solution of formic acid is ionized 3.2%. Its ionization constant is [MP PMT 1991] |
| A. | \[1\times {{10}^{-12}}\] |
| B. | \[2.1\times {{10}^{-4}}\] |
| C. | \[1.25\times {{10}^{-6}}\] |
| D. | \[1\times {{10}^{-14}}\] |
| Answer» C. \[1.25\times {{10}^{-6}}\] | |
| 6426. |
In weak electrolytic solution, degree of ionization |
| A. | Will be proportional to dilution |
| B. | Will be proportional to concentration of electrolyte |
| C. | Will be proportional to the square root of dilution |
| D. | Will be reciprocal to the dilution |
| Answer» D. Will be reciprocal to the dilution | |
| 6427. |
Which of the following substance is an electrolyte [MADT Bihar 1980] |
| A. | Chloroform |
| B. | Benzene |
| C. | Toluene |
| D. | Magnesium chloride |
| Answer» E. | |
| 6428. |
Degree of dissociation of \[0.1\,N\,\,C{{H}_{3}}COOH\] is (Dissociation constant \[=1\times {{10}^{-5}}\]) [MP PET 1997] |
| A. | \[{{10}^{-5}}\] |
| B. | \[{{10}^{-4}}\] |
| C. | \[{{10}^{-3}}\] |
| D. | \[{{10}^{-2}}\] |
| Answer» E. | |
| 6429. |
The degree of dissociation of \[0.1\,M\,HCN\] solution is 0.01%. Its ionisation constant would be [RPMT 1999] |
| A. | \[{{10}^{-3}}\] |
| B. | \[{{10}^{-5}}\] |
| C. | \[{{10}^{-7}}\] |
| D. | \[{{10}^{-9}}\] |
| Answer» E. | |
| 6430. |
The addition of a polar solvent to a solid electrolyte results in [NCERT 1973] |
| A. | Polarization |
| B. | Association |
| C. | Ionization |
| D. | Electron transfer |
| Answer» D. Electron transfer | |
| 6431. |
Which will not affect the degree of ionisation [MP PMT 1994] |
| A. | Temperature |
| B. | Concentration |
| C. | Type of solvent |
| D. | Current |
| Answer» E. | |
| 6432. |
The following equilibrium exists inaqueous solution, \[C{{H}_{3}}COOH\]⇄\[C{{H}_{3}}CO{{O}^{-}}+{{H}^{+}}\] if dil HCl is added, without change in temperature, the [UPSEAT 2000, 02] |
| A. | Concentration of \[C{{H}_{3}}CO{{O}^{-}}\] will increase |
| B. | Concentration of \[C{{H}_{3}}CO{{O}^{-}}\] will decrease |
| C. | The equilibrium constant will increase |
| D. | The equilibrium constant will decrease |
| Answer» C. The equilibrium constant will increase | |
| 6433. |
Vant hoff factor of \[BaC{{l}_{2}}\] of conc. \[0.01M\] is 1.98. Percentage dissociation of \[BaC{{l}_{2}}\] on this conc. Will be [Kerala CET 2005] |
| A. | 49 |
| B. | 69 |
| C. | 89 |
| D. | 98 |
| E. | 100 |
| Answer» B. 69 | |
| 6434. |
In which of the following dissociation of \[N{{H}_{4}}OH\] will be minimum [MP PET 2000] |
| A. | \[NaOH\] |
| B. | \[{{H}_{2}}O\] |
| C. | \[N{{H}_{4}}Cl\] |
| D. | \[NaCl\] |
| Answer» D. \[NaCl\] | |
| 6435. |
For a weak acid \[HA,\] Ostwald's dilution law is represented by the equation |
| A. | \[{{K}_{a}}=\frac{\alpha c}{1-{{\alpha }^{2}}}\] |
| B. | \[{{K}_{a}}=\frac{{{\alpha }^{2}}c}{1-\alpha }\] |
| C. | \[\alpha =\frac{{{K}_{a}}c}{1-c}\] |
| D. | \[{{K}_{a}}=\frac{{{\alpha }^{2}}c}{1-{{\alpha }^{2}}}\] |
| Answer» C. \[\alpha =\frac{{{K}_{a}}c}{1-c}\] | |
| 6436. |
The degree of ionization of a compound depends on [MNR 1980] |
| A. | Size of solute molecules |
| B. | Nature of solute molecules |
| C. | Nature of vessel used |
| D. | Quantity of electricity passed |
| Answer» C. Nature of vessel used | |
| 6437. |
At infinite dilution, the percentage ionisation for both strong and weak electrolytes is [CPMT 1999] |
| A. | 1% |
| B. | 20% |
| C. | 50% |
| D. | 100% |
| Answer» E. | |
| 6438. |
An ionizing solvent has |
| A. | Low value of dielectric constant |
| B. | High value of dielectric constant |
| C. | A dielectric constant equal to 1 |
| D. | Has a high melting point |
| Answer» C. A dielectric constant equal to 1 | |
| 6439. |
Which is generally true about ionic compounds [Pb. PMT 2002] |
| A. | Have low boiling point |
| B. | Have low melting point |
| C. | Soluble in non-polar solvents |
| D. | Conduct electricity in the fused state |
| Answer» E. | |
| 6440. |
Theory of ionization was given by [AMU 1983; DPMT 1985] |
| A. | Rutherford |
| B. | Graham |
| C. | Faraday |
| D. | Arrhenius |
| Answer» E. | |
| 6441. |
If \[\alpha \] is the degree of ionization, \[C\] the concentration of a weak electrolyte and \[{{K}_{a}}\]the acid ionization constant, then the correct relationship between \[\alpha ,\,\,C\] and \[{{K}_{a}}\]is [CET Pune 1998; Pb. PMT 1998; RPMT 2002] |
| A. | \[{{\alpha }^{2}}=\sqrt{\frac{{{K}_{a}}}{C}}\] |
| B. | \[{{\alpha }^{2}}=\sqrt{\frac{C}{{{K}_{a}}}}\] |
| C. | \[\alpha =\sqrt{\frac{{{K}_{a}}}{C}}\] |
| D. | \[\alpha =\sqrt{\frac{C}{{{K}_{a}}}}\] |
| Answer» D. \[\alpha =\sqrt{\frac{C}{{{K}_{a}}}}\] | |
| 6442. |
The equivalent conductance at infinite dilution of a weak acid such as \[HF\] [Pb. PMT 1998] |
| A. | Can be determined by measurement of very dilute \[HF\] solution |
| B. | Can be determined by extrapolation of measurements on dilute solutions of \[HCl,\,\,HBr\] and \[HI\] |
| C. | Can best be determined from measurements on dilute solutions of \[NaF,\,\,NaCl\] and \[HCl\] |
| D. | Is an undefined quantity |
| Answer» B. Can be determined by extrapolation of measurements on dilute solutions of \[HCl,\,\,HBr\] and \[HI\] | |
| 6443. |
Which of the following is non-electrolyte [CPMT 2001] |
| A. | \[NaCl\] |
| B. | \[CaC{{l}_{2}}\] |
| C. | \[{{C}_{12}}{{H}_{22}}{{O}_{11}}\] |
| D. | \[C{{H}_{3}}COOH\] |
| Answer» D. \[C{{H}_{3}}COOH\] | |
| 6444. |
Alizarin a mordant dye is not used in [CPMT 1990] |
| A. | Cotton dyeing |
| B. | Printing |
| C. | Painting |
| D. | Chromium lakes for wood dyeing |
| Answer» D. Chromium lakes for wood dyeing | |
| 6445. |
Alizarin dye obtained from the root of madder plant is anthraquinone derivative. Its structure corresponds to |
| A. | 1, 2-dihydroxy anthraquinone |
| B. | 2, 3-dihydroxy anthraquinone |
| C. | 1, 4-dihydroxy anthraquinone |
| D. | 1-hydroxy anthraquinone |
| Answer» B. 2, 3-dihydroxy anthraquinone | |
| 6446. |
To which class of dyes does phenolphthalein belong |
| A. | Azo dyes |
| B. | Nitro dyes |
| C. | Triphenyl methane dyes |
| D. | Phthalein dyes |
| Answer» E. | |
| 6447. |
An insoluble coloured compound formed by action of metallic salts on dyes is known as |
| A. | Lake |
| B. | Mordant |
| C. | Dye intermediate |
| D. | None of these |
| Answer» B. Mordant | |
| 6448. |
Alizarin belongs to the class of |
| A. | Vat dyes |
| B. | Mordant dyes |
| C. | Substantive dyes |
| D. | Reactive dyes |
| Answer» C. Substantive dyes | |
| 6449. |
An azo dye is formed by interaction of an aromatic diazonium chloride with |
| A. | A phenol |
| B. | An aliphatic primary amine |
| C. | Benzene |
| D. | Nitrous acid |
| Answer» B. An aliphatic primary amine | |
| 6450. |
The dyes which are applied to the fabric in the colourless reduced state and then oxidised to coloured state are called [DPMT 2004] |
| A. | Vat dyes |
| B. | Disperse dyes |
| C. | Triphenyl methane dye |
| D. | Azo dyes |
| Answer» B. Disperse dyes | |