

MCQOPTIONS
Saved Bookmarks
This section includes 71 Mcqs, each offering curated multiple-choice questions to sharpen your Php knowledge and support exam preparation. Choose a topic below to get started.
1. |
Polar form of the Cauchy-Riemann equations is |
A. | \(\dfrac{\partial u}{\partial r} = r \dfrac{\partial v}{\partial \theta} \ \text{and} \ \dfrac{\partial v}{\partial r}=-r \dfrac{\partial u}{\partial\theta }\) |
B. | \(\dfrac{\partial u}{\partial r} = \dfrac{1}{r} \dfrac{\partial v}{\partial \theta} \ \text{and} \ \dfrac{\partial v}{\partial r}=-\dfrac{1}{r} \dfrac{\partial u}{\partial\theta }\) |
C. | \(\dfrac{\partial u}{\partial r} = \dfrac{1}{r} \dfrac{\partial v}{\partial \theta} \ \text{and} \ \dfrac{\partial v}{\partial r}=-r \dfrac{\partial u}{\partial\theta }\) |
D. | \(\dfrac{\partial u}{\partial r} = r \dfrac{\partial v}{\partial \theta} \ \text{and} \ \dfrac{\partial v}{\partial r}=- \dfrac{1}{r} \dfrac{\partial u}{\partial\theta }\) |
Answer» C. \(\dfrac{\partial u}{\partial r} = \dfrac{1}{r} \dfrac{\partial v}{\partial \theta} \ \text{and} \ \dfrac{\partial v}{\partial r}=-r \dfrac{\partial u}{\partial\theta }\) | |
2. |
If f(z) = (x2 + ay2) + i bxy is a complex analytic function of z = x + iy, where \(i = \sqrt { - 1} \), then |
A. | a = -1, b = -1 |
B. | a = -1, b = 2 |
C. | a = 1, b = 2 |
D. | a = 2, b = 2 |
Answer» C. a = 1, b = 2 | |
3. |
Assuming \(i = \sqrt { - 1} \) and t is a real number, \(\mathop \smallint \limits_0^{\frac{\pi}{3}} {e^{it}}dt\) is: |
A. | \(\frac{{\sqrt 3 }}{2} + i\frac{1}{2}\) |
B. | \(\frac{{\sqrt 3 }}{2} - i\frac{1}{2}\) |
C. | \(\frac{1}{2} + i\frac{{\sqrt 3 }}{2}\) |
D. | \(\frac{1}{2} + i\left( {1 - \frac{{\sqrt 3 }}{2}} \right)\) |
Answer» B. \(\frac{{\sqrt 3 }}{2} - i\frac{1}{2}\) | |
4. |
\(1\;+\;\frac{x^2}{2!}\;+\;\frac{x^4}{4!}\;+\;\frac{x^6}{6!}\;+\;.....\) stands for. |
A. | sinh x |
B. | cosh x |
C. | cos x |
D. | sin x |
Answer» C. cos x | |
5. |
If f(z) is an analytic function whose real part is constant then f(z) is |
A. | function of z |
B. | function of x only |
C. | function of y only |
D. | constant |
Answer» E. | |
6. |
Let (-1 - j), (3 - j), (3 + j) and (-1 + j) be the vertices of a rectangle C in the complex plane. Assuming that C is traversed in counter-clockwise direction, the value of the countour integral \(\displaystyle\oint_C \dfrac{dz}{z^2 (z-4)}\) is |
A. | 0 |
B. | jπ/16 |
C. | jπ/2 |
D. | -jπ/8 |
Answer» E. | |
7. |
If then the value of xx is |
A. | \({e^{ - \frac{\pi }{2}}}\) |
B. | x |
C. | \({e^{ \frac{\pi }{2}}}\) |
D. | 1 |
Answer» B. x | |
8. |
In the neighbourhood of z = 1, the function f(z) has a power series expansion of the form |
A. | \(\frac{1}{z}\) |
B. | \(\frac{{ - 1}}{{z - 2}}\) |
C. | \(\frac{{z - 1}}{{z + 1}}\) |
D. | \(\frac{1}{{2z - 1}}\) |
Answer» B. \(\frac{{ - 1}}{{z - 2}}\) | |
9. |
An analytic function of a complex variable z = x + iy is expressed as f (z) = u(x,y) + iv (x, y) where i = √-1 . If u = xy, the expression for v should be |
A. | \(\frac{{{{\left( {x + y} \right)}^2}}}{2} + k\) |
B. | \(\frac{{{x^2} - {y^2}}}{2} + k\) |
C. | \(\frac{{{y^2} - {x^2}}}{2} + k\) |
D. | \(\frac{{{{\left( {x - y} \right)}^2}}}{2} + k\) |
Answer» D. \(\frac{{{{\left( {x - y} \right)}^2}}}{2} + k\) | |
10. |
If C is a circle of radius r with center z0, in the complex z-plane and if n is a non-zero integer, then \(\mathop \oint \nolimits_C \frac{{dz}}{{{{\left( {z - {z_0}} \right)}^{n + 1}}}}\) equals |
A. | 2πnj |
B. | 0 |
C. | nj/2π |
D. | 2πn |
Answer» C. nj/2π | |
11. |
Let p(z) = z3 + (1 + j) z2 + (2 + j) z + 3, where z is a complex number.Which one of the following is true? |
A. | All the roots cannot be real |
B. | conjugate {p(z)} = p(conjugate {z}) for all z |
C. | The sum of the roots of p(z) = 0 is a real number |
D. | The complex roots of the equation p(z) = 0 come in conjugate pairs |
Answer» B. conjugate {p(z)} = p(conjugate {z}) for all z | |
12. |
For a complex number z = 1 - 4i with i = √-1, the value of \(\left|\dfrac{z+3}{z-1}\right|\) is |
A. | 0 |
B. | 1/√2 |
C. | 1 |
D. | √2 |
Answer» E. | |
13. |
Consider the integral \(\displaystyle\oint_C \dfrac{\sin (x)}{x^2 (x^2 + 4)}dx\)Where C is a counter-clockwise oriented circle defined as |x - i| = 2. The value of the integral is |
A. | \(\dfrac{\pi}{4} \sin (2i)\) |
B. | \(\frac{\pi i}{2}-\dfrac{\pi}{8} \sin (2i)\) |
C. | \(\dfrac{\pi}{8} \sin (2i)\) |
D. | \(-\dfrac{\pi}{4} \sin (2i)\) |
Answer» C. \(\dfrac{\pi}{8} \sin (2i)\) | |
14. |
An analytic function f (z) of complex variable z = x + iy may be written as f (z) = u (x, y) + iv (x, y). Then, u (x, y) and v (x, y) must satisfy |
A. | \(\frac{{\partial u}}{{\partial x}} = \frac{{\partial v}}{{\partial y}}~and~\frac{{\partial u}}{{\partial y}} = \frac{{\partial v}}{{\partial x}}\) |
B. | \(\frac{{\partial u}}{{\partial x}} = \frac{{\partial v}}{{\partial y}}~and~\frac{{\partial u}}{{\partial y}} = - \frac{{\partial v}}{{\partial x}}\) |
C. | \(\frac{{\partial u}}{{\partial x}} = - \frac{{\partial v}}{{\partial y}}~and~\frac{{\partial u}}{{\partial y}} = \frac{{\partial v}}{{\partial x}}\) |
D. | \(\frac{{\partial u}}{{\partial x}} = - \frac{{\partial v}}{{\partial y}}~and~\frac{{\partial u}}{{\partial y}} = - \frac{{\partial v}}{{\partial x}}\) |
Answer» C. \(\frac{{\partial u}}{{\partial x}} = - \frac{{\partial v}}{{\partial y}}~and~\frac{{\partial u}}{{\partial y}} = \frac{{\partial v}}{{\partial x}}\) | |
15. |
For a complex variable z = x + iy, which of the following statements is true? |
A. | Both sin h Z and cos h Z are entire functions |
B. | Neither sin h Z nor cos h Z are entire functions. |
C. | sin h Z is entire but cos h Z is not an entire function |
D. | sin h Z is not entire but cos h Z is an entire function. |
Answer» B. Neither sin h Z nor cos h Z are entire functions. | |
16. |
Given \(f\left( z \right) = g\left( z \right) + h\left( z \right)\), where f, g, h are complex valued functions of a complex variable z. which one of the following statements is TRUE? |
A. | If \(f\left( z \right)\) is differential at \({z_0}\), then \(g\left( z \right)\) and \(h\left( z \right)\) are also differentiable at \({z_0}\). |
B. | If \(g\left( z \right)\) and \(h\left( z \right)\) are differentiable at \({z_0}\), then \(f\left( z \right)\) is also differentiable at \({z_0}\). |
C. | If \(f\left( z \right)\) is continuous at \({z_0}\), then it is differentiable at \({z_0}\). |
D. | If \(f\left( z \right)\) is differentiable at \({z_0}\), then so are its real and imaginary parts. |
Answer» C. If \(f\left( z \right)\) is continuous at \({z_0}\), then it is differentiable at \({z_0}\). | |
17. |
Let z = x + iy be a complex variable. Consider that contour integration is performed along the unit circle in anticlockwise direction. Which one of the following statements is Not True? |
A. | The residue of \(\frac{{\rm{z}}}{{{{\rm{z}}^2} - 1}}{\rm{at\;z}} = 1{\rm{\;is\;}}1/2\) |
B. | \(\mathop \oint \limits_{\rm{c}}^{\rm{\;}} {{\rm{z}}^2}{\rm{dz}} = 0\) |
C. | \(\frac{1}{{2{\rm{\pi i}}}}\mathop \oint \limits_{\rm{c}}^{\rm{\;}} \frac{1}{{\rm{z}}}{\rm{dz}} = 1\) |
D. | \({\rm{\bar z}}\) (Complex conjugate of z) is an analytical function |
Answer» E. | |
18. |
F(z) is a function of the complex variable z = x + iy given byF(z) = iz + k Re(z) + i Im(z).For what value of k will F(z) satisfy the Cauchy-Riemann equations? |
A. | 0 |
B. | 1 |
C. | -1 |
D. | y |
Answer» C. -1 | |
19. |
Let z1 = 2 + 3i and z2 = 4 – 2i, then \(z = \frac{{{z_1}}}{{{z_2}}}\) will be: |
A. | \(\frac{2}{5} - \frac{1}{3}i\) |
B. | \(\frac{1}{{10}} + \left( {\frac{4}{5}} \right)i\) |
C. | \(\frac{2}{5} + \frac{1}{3}i\) |
D. | \(\frac{1}{{10}} - \left( {\frac{4}{5}} \right)i\) |
Answer» C. \(\frac{2}{5} + \frac{1}{3}i\) | |
20. |
Let C represent the unit circle centered at origin in the complex plane, and complex variable, z = x + iy. The value of the contour integral \(\mathop \oint \nolimits_C^{} \frac{{\cosh 3z}}{{2z}}dz\) (where integration is taken counter clockwise) is |
A. | 2πi |
B. | πi |
C. | 0 |
D. | 2 |
Answer» C. 0 | |
21. |
If the imaginary part v = ex (x sin y + y cos y) is part of analytic function f(z) = u + iv, then f(z) is |
A. | (1 + z) ez + c |
B. | z ez + c |
C. | z e2z + c |
D. | (1 – z) ez + c |
Answer» C. z e2z + c | |
22. |
If z = a is an isolated singularity of f and \(f\left( z \right) = \mathop \sum \limits_{ - \infty }^\infty {a_n}{\left( {z - a} \right)^n}\) is its Laurent expansion in ann (a; 0, R), then z = a is a removable singularity if |
A. | an = 0, n ≤ -1 |
B. | an ≠ 0, n ≤ -1 |
C. | an = 0, n ≥ -1 |
D. | an ≠ 0, n ≥ -1 |
Answer» B. an ≠ 0, n ≤ -1 | |
23. |
If f (z) = u + iv is an analytic function, then |
A. | u is harmonic function |
B. | v is harmonic function |
C. | Both u and v are harmonic functions |
D. | Both u and v are not harmonic functions |
Answer» D. Both u and v are not harmonic functions | |
24. |
If f(z) has a pole of order n at z = a, then residue of function f(z) at a is |
A. | \(\dfrac{1}{(n)!} \left\lbrace \dfrac{d^{n-1}}{dz^{n-1}}\left((z-a)^{n-1}f(z)\right)\right\rbrace_{z=a}\) |
B. | \(\dfrac{1}{(n-1)!} \left\lbrace \dfrac{d^{n-1}}{dz^{n-1}}\left((z-a)^{n-1}f(z)\right)\right\rbrace_{z=a}\) |
C. | \(\dfrac{1}{(n)!} \left\lbrace \dfrac{d^{n-1}}{dz^{n-1}}\left((z-a)^{n}f(z)\right)\right\rbrace_{z=a}\) |
D. | \(\dfrac{1}{(n-1)!} \left\lbrace \dfrac{d^{n-1}}{dz^{n-1}}\left((z-a)^{n}f(z)\right)\right\rbrace_{z=a}\) |
Answer» E. | |
25. |
An analytic function of a complex variable z = x + iy is expressed as f(z) = u(x, y) + i v(x, y), where i = √-1. If u(x, y) = x2 – y2, then expression for v(x, y) in terms of x, y and a general constant c would be |
A. | xy + c |
B. | \(\frac{{{x^2} + {y^2}}}{2} + c\) |
C. | 2xy + c |
D. | \(\frac{{{{\left( {x - y} \right)}^2}}}{2} + c\) |
Answer» D. \(\frac{{{{\left( {x - y} \right)}^2}}}{2} + c\) | |
26. |
In the Laurent expansion of \(f\left( z \right) = \frac{1}{{\left( {z - 1} \right)\left( {z - 2} \right)}}\) valid in the region 1 < |z| < 2, the co-efficient of \(\frac{1}{{{z^2}}}\) is |
A. | 0 |
B. | 1/2 |
C. | 1 |
D. | -1 |
Answer» E. | |
27. |
C is a closed path in the z-plane given by |z| = 3. The value of the integral \(\mathop \oint \nolimits_C^\; \left( {\frac{{{z^2} - z + 4j}}{{z + 2j}}} \right)dz\) is |
A. | -4π (1 + j2) |
B. | 4π (3 – j2) |
C. | -4π (3 + j2) |
D. | 4π (1 – j2) |
Answer» D. 4π (1 – j2) | |
28. |
Let \(f\left( z \right) = \frac{1}{{z + a}},\;a > 0\). The value of the integral ∮ f(z) dz over a circle C with center (-a, 0) and radius R > 0 evaluated in the anti-clock wise direction is |
A. | 0 |
B. | 2πi |
C. | -2πi |
D. | 4πi |
Answer» C. -2πi | |
29. |
If 1, ω, ω2 are cube roots of unity then the value of Δ = \(\begin{bmatrix} 1 &\omega & \omega^{2n} \\ \omega^2 & \omega^{2n} & 1 \\ \omega^{2n}& 1 & \omega^{n} \end{bmatrix} \) |
A. | 1 |
B. | 0 |
C. | ω |
D. | ω2 |
Answer» C. ω | |
30. |
cos (z) can be expressed as |
A. | \(\frac{1}{2}\left( {{e}^{i~z}}+{{e}^{-i~z}} \right)\) |
B. | \(\frac{1}{2}\left( {{e}^{i~z}}-{{e}^{-iz}} \right)\) |
C. | \(\frac{1}{2i}\left( {{e}^{i~z}}+{{e}^{-iz}} \right)\) |
D. | \(\frac{1}{2i}\left( {{e}^{i~z}}-{{e}^{-iz}} \right)\) |
Answer» B. \(\frac{1}{2}\left( {{e}^{i~z}}-{{e}^{-iz}} \right)\) | |
31. |
Let z = x + jy where j = √-1. Then \(\overline {\cos z} =\) |
A. | cos z |
B. | cos z̅ |
C. | sin z |
D. | sin z̅ |
Answer» C. sin z | |
32. |
If the complex valued function f(z) = log z, then |
A. | f(z) satisfies Cauchy-Riemann equation |
B. | f(z) is analytic |
C. | f(z) is not analytic |
D. | None of the above |
Answer» D. None of the above | |
33. |
Given \(f\left( z \right) = \frac{{{z^2}}}{{{z^2} \;+ \;{a^2}}}\). Then |
A. | z = ia is a simple pole and \(\frac{ia}{2}\) is a residue at z = ia of f(z) |
B. | z = ia is a simple pole ia is a residue at z = ia of f(z) |
C. | z = ia is a simple pole and \(-\frac{ia}{2}\) is a residue at z = ia of f(z) |
D. | none of the above |
Answer» B. z = ia is a simple pole ia is a residue at z = ia of f(z) | |
34. |
1 + i is equivalent to |
A. | \(\sqrt 2 {{\rm{e}}^{ - \frac{{{\rm{i\pi }}}}{4}}}\) |
B. | \(\sqrt 2 {{\rm{e}}^{\frac{{{\rm{i\pi }}}}{4}}}\) |
C. | \(2{{\rm{e}}^{ - \frac{{{\rm{i\pi }}}}{4}}}\) |
D. | \(2{{\rm{e}}^{\frac{{{\rm{i\pi }}}}{4}}}\) |
Answer» C. \(2{{\rm{e}}^{ - \frac{{{\rm{i\pi }}}}{4}}}\) | |
35. |
Consider the function \(f\left( z \right) = z + {z^*}\) where is a complex variable and denotes its complex conjugate. Which one of the following is TRUE? |
A. | \(f\left( z \right)\) is both continuous and analytic |
B. | \(f\left( z \right)\) is continuous but not analytic |
C. | \(f\left( z \right)\) is not continuous but is analytic |
D. | \(f\left( z \right)\) is neither continuous nor analytic |
Answer» C. \(f\left( z \right)\) is not continuous but is analytic | |
36. |
If the principal part of the Laurent’s series vanishes, then the Laurent’s series reduces to |
A. | Cauchy’s series |
B. | Maclaurin’s series |
C. | Taylor’s series |
D. | None of the above |
Answer» D. None of the above | |
37. |
If C is a circle |z| = 4 and \(f\left( z \right) = \frac{{{z^2}}}{{{{\left( {{z^2} - 3z + 2} \right)}^2}}}\), then \(\oint f\left( z \right)dz\) is |
A. | 1 |
B. | 0 |
C. | -1 |
D. | -2 |
Answer» C. -1 | |
38. |
If W = ϕ + iΨ represents the complex potential for an electric field.Given \(\Psi =x^2-y^2 + \dfrac{x}{x^2 +y^2}\), then the function ϕ is |
A. | \(-2xy+ \dfrac{x}{x^2+y^2}+C\) |
B. | \(- 2{\rm{xy}} + \frac{{\rm{y}}}{{{{\rm{x}}^2} + {{\rm{y}}^2}}} + {\rm{c}}\) |
C. | \(2xy - \;\frac{y}{{{x^2} + {y^2}}}+c\) |
D. | \(2{\rm{xy}} - \frac{{\rm{x}}}{{{{\rm{x}}^2} + {{\rm{y}}^2}}} + {\rm{c}}\) |
Answer» C. \(2xy - \;\frac{y}{{{x^2} + {y^2}}}+c\) | |
39. |
If C is any simple closed curve enclosing the point z = z0, then the value of \( \mathop \oint \limits_C (z-z_0)~dz\) |
A. | 0 |
B. | 2πi |
C. | πi |
D. | 4πi |
Answer» B. 2πi | |
40. |
A harmonic function is analytic if it satisfies the Laplace equation. If u(x, y) = 2x2 − 2y2 + 4xy is a harmonic function, then its conjugate harmonic function v(x, y) is |
A. | 4xy − 2x2 + 2y2 + constant |
B. | 4y2 − 4xy + constant |
C. | 2x2 − 2y2 + xy + constant |
D. | −4xy + 2y2 − 2x2 + constant |
Answer» B. 4y2 − 4xy + constant | |
41. |
Assume that Φ is harmonic in domain D and for x0 ∈ D, B(x0, r) ⊆ D, then the average value of Φ over the boundary of B(x0, r) equals |
A. | \({\rm{\Phi }}\left( {{x_0}} \right)\) |
B. | \(r{\rm{\Phi }}\left( {{x_0}} \right)\) |
C. | \(\frac{1}{{\pi r}}{\rm{\Phi }}\left( x \right)\) |
D. | \(\frac{4}{3}\pi {r^3}{\rm{\Phi }}\left( x \right)\) |
Answer» B. \(r{\rm{\Phi }}\left( {{x_0}} \right)\) | |
42. |
If u = x2 – y2, then the conjugate harmonic function is |
A. | 2xy |
B. | x2 + y2 |
C. | y2 – x2 |
D. | -x2 – y2 |
Answer» B. x2 + y2 | |
43. |
Find the real values of x, y, so that – 3 + j x2y and (x2 + y) + j 4 may represent complex conjugate numbers. |
A. | x = 1, y = 4 |
B. | x = 2, y = 1 |
C. | x = 2j, y = 1 |
D. | x = ±1, y = -4 |
Answer» E. | |
44. |
If f(z) is analytic in domain D, then f(z) is |
A. | continuous in D |
B. | continuous but not necessarily differentiable in D |
C. | not both continuous and differentiable in D |
D. | differentiable in D |
Answer» E. | |
45. |
If ϕ (x, y) and ψ(x, y) are functions with continuous second derivatives, then ϕ (x, y) + iψ(x, y) can be expressed as an analytic function of \(x + iy\left( {i = \sqrt { - 1} } \right)\), when |
A. | \(\frac{{\partial \phi }}{{\partial x}} = - \frac{{\partial \psi }}{{\partial x}};\;\frac{{\partial \phi }}{{\partial y}} = \frac{{\partial \psi }}{{\partial y}}\) |
B. | \(\frac{{\partial \phi }}{{\partial y}} = - \frac{{\partial \psi }}{{\partial x}};\;\frac{{\partial \phi }}{{\partial x}} = \frac{{\partial \psi }}{{\partial y}}\) |
C. | \(\frac{{{\partial ^2}\phi }}{{\partial {x^2}}} + \frac{{{\partial ^2}\phi }}{{\partial {y^2}}} = \frac{{{\partial ^2}\psi }}{{\partial {x^2}}} + \frac{{{\partial ^2}\psi }}{{\partial {y^2}}} = 1\) |
D. | \(\frac{{\partial \phi }}{{\partial x}} + \frac{{\partial \phi }}{{\partial y}} = \frac{{\partial \psi }}{{\partial x}} + \frac{{\partial \psi }}{{\partial y}} = 0\) |
Answer» C. \(\frac{{{\partial ^2}\phi }}{{\partial {x^2}}} + \frac{{{\partial ^2}\phi }}{{\partial {y^2}}} = \frac{{{\partial ^2}\psi }}{{\partial {x^2}}} + \frac{{{\partial ^2}\psi }}{{\partial {y^2}}} = 1\) | |
46. |
Consider the following complex function:\(f\left( z \right) = \frac{9}{{\left( {z - 1} \right){{\left( {z + 2} \right)}^2}}}\)Which of the following is one of the residues of the above function? |
A. | −1 |
B. | 9/16 |
C. | 2 |
D. | 9 |
Answer» B. 9/16 | |
47. |
If u solves ∇2u = 0, in D ⊆ Rn then,(Here ∂D denotes the boundary of D and D̅ = D ∪ ∂D) |
A. | \(\mathop {\max }\limits_{\bar D} u \ge \mathop {\max }\limits_D u\) |
B. | \(\mathop {\max }\limits_{\bar D} u = \mathop {\max }\limits_{\partial D} u\) |
C. | \(\mathop {\max }\limits_{\bar D} u = u\left( x \right)\;\forall \;x \in D\) |
D. | u is constant in D |
Answer» C. \(\mathop {\max }\limits_{\bar D} u = u\left( x \right)\;\forall \;x \in D\) | |
48. |
If (x1 + j y1) = (x2 + j y2), then which of the following is true.Here \(j = \sqrt { - 1} ,x\;\& \;y\) are real numbers. |
A. | x1 = y2 |
B. | x2 = y2 |
C. | x1 – j y1 = x2 – j y2 |
D. | x1 – j y1 = y2 + j x2 |
Answer» D. x1 – j y1 = y2 + j x2 | |
49. |
All the values of the multi-valued complex function 1i, where \(i = \sqrt { - 1} \), are |
A. | purely imaginary |
B. | real and non-negative |
C. | on the unit circle |
D. | equal in real and imaginary parts. |
Answer» C. on the unit circle | |
50. |
If the imaginary part of \(\frac{{2z + 1}}{{iz + 1}}\) is – 2, then the locus of the point z in the complex plane is |
A. | x + 2y – 2 = 0 |
B. | 2x + y – 2 = 0 |
C. | x – 2y – 2 = 0 |
D. | x + 2y + 2 = 0 |
Answer» B. 2x + y – 2 = 0 | |