Explore topic-wise MCQs in Computational Fluid Dynamics.

This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.

1.

The Spalart-Allmaras model is best suited for ___________

A. turbulent jet flows
B. turbulent mixing layers
C. turbulent boundary layers with slight pressure gradients
D. turbulent boundary layers with adverse pressure gradients
Answer» E.
2.

The rate of dissipation of kinematic eddy viscosity parameter is Cw1 (( frac{ tilde{ }}{ y})^2 f_w ). What is the length scale used here?

A. y
B. ( y)<sup>2</sup>
C. ( frac{C_{w1}}{y} )
D. ( frac{y}{C_{w1}} )
Answer» B. ( y)<sup>2</sup>
3.

The rate of production of the kinematic eddy viscosity parameter is related to ___________

A. rate of dissipation of kinetic energy
B. turbulence frequency
C. vorticity
D. kinetic energy
Answer» D. kinetic energy
4.

Expand the Reynolds stress term (- rho overline{u_{i}^{ } u_{j}^{ }} ) for the Spalart-Allmaras model.

A. (- rho overline{u_{i}^{ } u_{j}^{ }} = rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_i}+ frac{ partial U_j}{ partial x_j}) )
B. (- rho overline{u_{i}^{ } u_{j}^{ }} = rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_j}+ frac{ partial U_j}{ partial x_i}) )
C. (- rho overline{u_{i}^{ } u_{j}^{ }} = 2 rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_i}+ frac{ partial U_j}{ partial x_j}) )
D. (- rho overline{u_{i}^{ } u_{j}^{ }} = 2 rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_j}+ frac{ partial U_j}{ partial x_i}) )
Answer» C. (- rho overline{u_{i}^{ } u_{j}^{ }} = 2 rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_i}+ frac{ partial U_j}{ partial x_j}) )
5.

Near the wall, the first wall damping function tends to ___________

A. -1
B. 1
C. 0
D.
Answer» D.
6.

At high Reynolds numbers, the first wall damping function becomes ___________

A. -1
B. 1
C. 0
D.
Answer» C. 0
7.

The first wall damping function in the Spalart-Allmaras model is a function of ___________

A. the product of the dynamic eddy viscosity parameter and the dynamic eddy viscosity
B. the ratio of the dynamic eddy viscosity parameter and the dynamic eddy viscosity
C. the product of the kinematic eddy viscosity parameter and the kinematic eddy viscosity
D. the ratio of the kinematic eddy viscosity parameter and the kinematic eddy viscosity
Answer» E.
8.

In the Spalart-Allmaras model, the dynamic eddy viscosity in terms of the kinematic eddy viscosity parameter () is given by __________ (Note: f 1 is the wall damping function and is the density of flow).

A. f<sub> 1</sub>
B. ( ) f<sub> 1</sub>
C. ( f<sub> 1</sub>)
D. ( f<sub> 1</sub>)
Answer» B. ( ) f<sub> 1</sub>
9.

The transport equation in the Spalart-Allmaras model is for the transport of ___________

A. kinematic eddy viscosity parameter
B. kinematic eddy viscosity
C. dynamic eddy viscosity parameter
D. dynamic eddy viscosity
Answer» B. kinematic eddy viscosity
10.

The Spalart-Allmaras model differs from the RANS equations by ___________

A. four extra transport equations
B. one extra transport equation
C. two extra transport equations
D. three extra transport equations
Answer» C. two extra transport equations