Explore topic-wise MCQs in Computational Fluid Dynamics.

This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.

1.

When the finite volume approach is used, if the general form is given as
FluxT=FluxC C+FluxC C +FluxV

A. nThe superscript o indicates the older time step, the value of FluxC while using the second-order upwind Euler scheme is ________
B. ( frac{3 rho_C^o V_C}{2 Delta t} )
C. (- frac{3 rho_C^o V_C}{2 Delta t} )
D. ( frac{2 rho_C^o V_C}{ Delta t} )
E. (- frac{2 rho_C^o V_C}{ Delta t} )
Answer» E. (- frac{2 rho_C^o V_C}{ Delta t} )
2.

The numerical dispersion term of the second-order upwind Euler scheme is of ____________

A. third-order
B. second-order
C. first-order
D. no dispersion
Answer» B. second-order
3.

How many numerical diffusion terms does the second-order upwind Euler scheme have?

A. Infinity
B. No diffusion term
C. One term
D. Two terms
Answer» C. One term
4.

Which of these time-steps are needed to approximate the value at time-step ( frac{ Delta t}{2} ) using the second-order upwind Euler scheme for finite volume approach?

A. t- ( frac{ Delta t}{2} ) and t-2 t
B. t and t- t
C. t- t and t-2 t
D. t and t-2 t
Answer» D. t and t-2 t
5.

What is the equivalent of ( C C)t+ t/2 using the second-order upwind Euler scheme for finite volume approach?

A. ( frac{3}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup>
B. ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup>
C. ( frac{3}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup>
D. ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup>
Answer» D. ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup>
6.

Which of these terms cause instability in the Crank-Nicolson scheme when used for finite volume approach?

A. Anti-diffusion term
B. Anti-dispersive term
C. Diffusion term
D. Dispersive term
Answer» E.
7.

The results using the Crank-Nicolson scheme for finite volume approach can be reformulated using the ________

A. implicit first-order Euler scheme
B. implicit and explicit first-order Euler schemes
C. explicit first-order Euler scheme
D. central difference scheme
Answer» C. explicit first-order Euler scheme
8.

The stability of the Crank-Nicolson scheme for finite volume approach is constrained by ________

A. CFL number
B. Peclet number
C. Time-step size
D. Spatial grid size
Answer» B. Peclet number
9.

Which of these time-steps are used to approximate the value at time-step t- ( frac{ Delta t}{2} ) using the Crank-Nicolson scheme for finite volume approach?

A. t and t+ t
B. t and t- t
C. t and t- ( frac{ Delta t}{2} )
D. t and t+ ( frac{ Delta t}{2} )
Answer» C. t and t- ( frac{ Delta t}{2} )
10.

What is the equivalent of ( C C)t+ t/2 using the Crank-Nicolson scheme for finite volume approach?

A. ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup>
B. ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup>
C. ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>-( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup>
D. ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup> ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup>
Answer» B. ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup>