

MCQOPTIONS
Saved Bookmarks
This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.
1. |
The Spalart-Allmaras model is best suited for ___________ |
A. | turbulent jet flows |
B. | turbulent mixing layers |
C. | turbulent boundary layers with slight pressure gradients |
D. | turbulent boundary layers with adverse pressure gradients |
Answer» E. | |
2. |
The rate of dissipation of kinematic eddy viscosity parameter is Cw1ρ\((\frac{\tilde{ν}}{κy})^2 f_w\). What is the length scale used here? |
A. | κy |
B. | (κy)2 |
C. | \(\frac{C_{w1}}{y}\) |
D. | \(\frac{y}{C_{w1}} \) |
Answer» B. (κy)2 | |
3. |
The rate of production of the kinematic eddy viscosity parameter is related to ___________ |
A. | rate of dissipation of kinetic energy |
B. | turbulence frequency |
C. | vorticity |
D. | kinetic energy |
Answer» D. kinetic energy | |
4. |
Expand the Reynolds stress term \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}}\) for the Spalart-Allmaras model. |
A. | \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = \rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_i}+\frac{\partial U_j}{\partial x_j})\) |
B. | \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = \rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_j}+\frac{\partial U_j}{\partial x_i})\) |
C. | \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = 2\rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_i}+\frac{\partial U_j}{\partial x_j})\) |
D. | \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = 2\rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_j}+\frac{\partial U_j}{\partial x_i}) \) |
Answer» C. \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = 2\rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_i}+\frac{\partial U_j}{\partial x_j})\) | |
5. |
Near the wall, the first wall damping function tends to ___________ |
A. | -1 |
B. | 1 |
C. | 0 |
D. | ∞ |
Answer» D. ∞ | |
6. |
At high Reynolds numbers, the first wall damping function becomes ___________ |
A. | -1 |
B. | 1 |
C. | 0 |
D. | ∞ |
Answer» C. 0 | |
7. |
The first wall damping function in the Spalart-Allmaras model is a function of ___________ |
A. | the product of the dynamic eddy viscosity parameter and the dynamic eddy viscosity |
B. | the ratio of the dynamic eddy viscosity parameter and the dynamic eddy viscosity |
C. | the product of the kinematic eddy viscosity parameter and the kinematic eddy viscosity |
D. | the ratio of the kinematic eddy viscosity parameter and the kinematic eddy viscosity |
Answer» E. | |
8. |
In the Spalart-Allmaras model, the dynamic eddy viscosity in terms of the kinematic eddy viscosity parameter (v) is given by __________ (Note: fν1 is the wall damping function and ρ is the density of flow). |
A. | ρvfν1 |
B. | (ρv) ⁄ fν1 |
C. | (ρfν1) ⁄ v |
D. | v ⁄ (ρfν1) |
Answer» B. (ρv) ⁄ fν1 | |
9. |
The transport equation in the Spalart-Allmaras model is for the transport of ___________ |
A. | kinematic eddy viscosity parameter |
B. | kinematic eddy viscosity |
C. | dynamic eddy viscosity parameter |
D. | dynamic eddy viscosity |
Answer» B. kinematic eddy viscosity | |
10. |
The Spalart-Allmaras model differs from the RANS equations by ___________ |
A. | four extra transport equations |
B. | one extra transport equation |
C. | two extra transport equations |
D. | three extra transport equations |
Answer» C. two extra transport equations | |